سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

Environmental Optimization of Building Insulation Thickness for Cold Climates using Neural Network Method

Publish Year: 1399
Type: Journal paper
Language: English
View: 324

This Paper With 6 Page And PDF Format Ready To Download

این Paper در بخشهای موضوعی زیر دسته بندی شده است:

Export:

Link to this Paper:

Document National Code:

JR_JEFM-4-1_006

Index date: 22 July 2020

Environmental Optimization of Building Insulation Thickness for Cold Climates using Neural Network Method abstract

In this research the environmental effects (CO2) of rock wool as a mineral insulation and expanded polystyrene as a polymeric insulation for building insulation is studied. First the intended building is simulated by Design Builder software for cold climates like Tabriz city in Iran, and then the thickness effect of these two insulations is studied at the building’s exterior wall by using Energy Plus simulation engine in Design Builder software in order to find the optimized thickness in terms of environmental effect (CO2). Except considering the gas emission amount of building’s heating and cooling systems in a year, the amount of CO2 gas consumption in production process to installation of various thicknesses has been also taken into account. Finally by using Single Layer Perceptron Artificial Neural Network method, the environmental optimized thickness of insulation in terms of gas emission while consuming energy in building and its production during the manufacturing of insulation over ten years span in cold areas of Iran like Tabriz, is 12.5 centimeters for expanded polystyrene and 8.8 centimeters for rock wool. It is concluded that from gas emission perspective in cold climates, the mineral insulation such as rock wool is has lower optimized thickness comparing to polymeric insulation like expanded polystyrene.

Environmental Optimization of Building Insulation Thickness for Cold Climates using Neural Network Method Keywords:

Environmental Optimization of Building Insulation Thickness for Cold Climates using Neural Network Method authors

E Anbarzadeh

Department of Mechanical Engineering, Faculty of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran

T Shahmohammadi

Department of Mechanical Engineering, Faculty of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
R. Shabanpour and H. sayyaadi, Energ. Convers. Manage., 75, (2013), ...
E. Deniz and S. Cinar, Energ. Convers. Manage., 126, (2016), ...
B. Comakli and B. Yüksel, Appl. Therm. Eng., 23, (2003), ...
S. Jaber and S. Ajib, Energ. Build., 43, (2011), 1829. ...
E. Cuce, P. M. Cuce, C. J. Wood and S. ...
M. Ozel and K. Pihtili, Build. Environ., 42, (2007), 3051. ...
H. Ozkahraman and A. Bolattürk, Constr. Build. Mater., 20, (2006), ...
J. Yu, C. Yang, L. Tian and D. Liao, Appl. ...
N. Daouas, Z. Hassen, H. Ben and Aissia, Appl. Therm. ...
K. Achten, R. De Coninck, G. Verbeeck and J. Van ...
K. Alanne, A. Salo, A. Saari and S. Gustafsson, Energ. ...
D. Anastaselos and S. Oxizidis, Energ. Build., 43, (2011), 686. ...
R. Anderson, C. Christensen and S. Horowitz, ASHRAE Annual Meeting, ...
M. Beccali, M. Cellura, M. Fontana and S. Longoa, Renew. ...
J. Grygierek and K. Grygierek, Energies, 10, (2017), 1570. ...
O. Kaynakli, Renew. Sust. Energ. Rev., 16(1), (2012), 415. ...
J. Nyers, L. Kajtar, S. Tomić, and A. Nyers, Energ. ...
A. Bolattürk, Appl. Therm. Eng., 26, (2006), 1301. ...
C. Diakaki and E. Grigoroudis, Performance study of a multi-objective ...
E. Anbarzadeh and S. M. G, Yazdi, J. Environ. Friend. ...
E. A. Rad and E. Fallahi, Construct. Build Mater., (2019), ...
نمایش کامل مراجع