Parallel Jobs Scheduling with a Specific Due Date: Asemi-definite Relaxation-based Algorithm
Publish Year: 1399
نوع سند: مقاله ژورنالی
زبان: English
View: 599
This Paper With 12 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JOIE-13-2_014
تاریخ نمایه سازی: 26 شهریور 1399
Abstract:
This paper considers a different version of the parallel machines scheduling problem in which the parallel jobs simultaneously requirea pre-specifiedjob-dependent number of machines when being processed.This relaxation departs from one of the classic scheduling assumptions. While the analytical conditions can be easily statedfor some simple models, a graph model approach is required when conflicts of processor usage are present. The main decisions and solving steps are as follows, respectively. (i) Converting the scheduling problem to graph model; (ii) Dividing jobs into independent sets: in this phase, we propose a semi-definite relaxation algorithm in which we use graph coloring concept; (iii) Sequencing the independent sets as a single-machine scheduling in which jobs in such a system arejob sets formed by using a semi-definite relaxation solution and determining the problem as a schedule that minimizes the sum of the tardiness of jobs. In this regard, after grouping the jobs by a semi-definite programming relaxation algorithm, we used the rounding algorithm for graph coloring. We also proposed a variable neighborhood search algorithm for sequencing the obtained job sets in order to minimize the sum of the tardiness. Experimental results show that this methodology is interesting by obtaining good results.
Keywords:
Authors
Javad Behnamian
Department of Industrial Engineering, Faculty of Engineering, Bu-Ali Sina University, Hamedan, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :