پیش بینی بازده بازار سرمایه با استفاده از الگوی یادگیری الگوریتم لورنبرگ مارکوات, گرادیان نزولی و الگوی آریما (ARIMA)
Publish Year: 1399
Type: Journal paper
Language: Persian
View: 388
This Paper With 26 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
Export:
Document National Code:
JR_FEJ-11-44_017
Index date: 25 January 2021
پیش بینی بازده بازار سرمایه با استفاده از الگوی یادگیری الگوریتم لورنبرگ مارکوات, گرادیان نزولی و الگوی آریما (ARIMA) abstract
پژوهش حاضر بر اساس ارزیابی الگوی یادگیری الگوریتم لورنبرگ مارکوات، گرادیان نزولی و الگوی آریما به مقایسه و توانایی پیشبینی کنندگی در بازار سرمایه میپردازد. بدین منظور دادههای بازار در سالهای 1394 تا 1397 مورد استفاده قرار گرفت و بیش از 75 درصد از این دادهها تا قبل از سال 1397 به عنوان دادههای آموزشی استفاده شد و دادههای یک سال پایانی نیز به عنوان دادههای آزمایشی مورد استفاده قرار گرفته شده است. نتایج تحقیق نشان دادهاند، شبکههای عصبی مصنوعی ظرفیت بالایی برای پیشبینی قیمت دارند. مقایسه نتایج و عملکرد شبکههای عصبی و الگوی آریما (ARIMA) حاکی از آن است که شبکه عصبی قدرت پیشبینی بالاتری در مقایسه با الگوی خطی آریما (ARIMA) دارد، همچنین مقایسه عملکرد و دقت پیشبینی دو نوع شبکه عصبی با الگوریتم یادگیری لونبرگ مارکوارت و الگوریتم یادگیری گرادیان نزولی نشان داد که استفاده از الگوریتم یادگیری لونبرگ مارکورات توانسته است دقت پیشبینی شبکه عصبی را افزایش داده و خطای آن را کاهش دهد، بنابراین بر پایه پژوهش انجام شده میتوان چنین نتیجه گرفت که الگوریتم یادگیری لونبرگ مارکوارت قدرت پیشبینی شبکه عصبی را بهبود میبخشد.
پیش بینی بازده بازار سرمایه با استفاده از الگوی یادگیری الگوریتم لورنبرگ مارکوات, گرادیان نزولی و الگوی آریما (ARIMA) Keywords:
پیش بینی بازده بازار سرمایه با استفاده از الگوی یادگیری الگوریتم لورنبرگ مارکوات, گرادیان نزولی و الگوی آریما (ARIMA) authors
مهدی اشعریون قمی زاده
گروه حسابداری، واحد دماوند، دانشگاه آزاد اسلامی، دماوند، ایران
محمد محمودی
گروه حسابداری، واحد فیروزکوه, دانشگاه آزاد اسلامی، فیروزکوه, ایران