Buckling analysis of FML cylindrical shells under combined axial and torsional loading

Publish Year: 1399
نوع سند: مقاله ژورنالی
زبان: English
View: 183

This Paper With 8 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_MACS-7-2_008

تاریخ نمایه سازی: 16 بهمن 1399

Abstract:

Generally, in-served cylindrical shells buckling usually takes place not merely under one of the basic loads, i.e., axial compression, lateral pressure, and torsion, but under a combination of them. The buckling behavior of fiber-metal laminate (FML) cylindrical shells under combined axial and torsional loading is studied in this paper. The Kirchhoff Love-type assumption is employed to study the axial buckling load. Then, an extended finite element (FE) model is presented and results are compared. A number of consequential parameters such as lay-up arrangement, metal type and metal volume fraction are employed and enhancement of buckling behavior of the shell is also studied. Finally, the interaction of axial /torsional loading is analyzed and discussed. The results show that as the metal volume fraction rises to 15%, the endurable buckling load increases almost 43% more than the state in which there is no metal layer. The numerical results show that increasing the metal volume percentage leads to a decrease in buckling performance of the structure under axial loading.

Keywords:

Fiber metal laminates (FMLs) , Cylindrical shell , Buckling Analysis , Finite element method (FEM) , Torsional Buckling

Authors

- -

Composite and Nanocomposite Research Laboratory, Department of Solid Mechanic, Faculty of Mechanical Engineering, University of Kashan, Kashan, Iran

- -

Composite and Nanocomposite Research Laboratory, Department of Solid Mechanic, Faculty of Mechanical Engineering, University of Kashan, Kashan, Iran

- -

Composite and Nanocomposite Research Laboratory, Department of Solid Mechanic, Faculty of Mechanical Engineering, University of Kashan, Kashan, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • [1]. Nayyeri Amiri S., Rasheed H.A., 2017. Nondestructive method to ...
  • [2]. Nejad M.Z., Jabbari M., Hadi A., 2017. A review ...
  • [3]. Asghari B., Ghasemi A.R., Tabatabaeian A., 2019. On the ...
  • [4]. Nejati, M., Ghasemi-Ghalebahman, A., Soltanimaleki, A., Dimitri, R., & ...
  • [5]. Taheri-Behrooz, F., Omidi, M. 2018. Buckling of axially compressed ...
  • [6]. Arefi M., Mohammadi M., Amir-ahmadi S., Rabczuk T., 2019. ...
  • [7]. Tahir Z ul R., Mandal P., 2017. Artificial neural ...
  • [8]. Hajmohammad M.H., Tabatabaeian A., Ghasemi A.R., Taheri-Behrooz F., 2020. ...
  • [9]. Geier B., Meyer-Piening H.R., Zimmermann R., 2002. On the ...
  • [10]. Tafreshi A., Bailey C.G., 2007. Instability of imperfect composite ...
  • [11]. Taheri-Behrooz F., Omidi M., Shokrieh M.M., 2017. Experimental and ...
  • [12]. Shen H.S., Xiang Y., 2018. Postbuckling of functionally graded ...
  • [13]. Civalek Ö., 2017. Buckling analysis of composite panels and ...
  • [14]. Tabatabaeian A., Ghasemi A.R., 2019. Curvature changes and weight ...
  • [15]. Ghasemi A.R., Tabatabaeian A., Asghari B., 2019. Application of ...
  • [16]. Tabatabaeian A., Baraheni M., Amini S., Ghasemi A.R., 2019. ...
  • [17]. Baraheni M., Tabatabaeian A., Amini S., Ghasemi A.R., 2019. ...
  • [18]. Tabatabaeian A., Ghasemi A.R., Asghari B., 2019. Specification of ...
  • [19]. Hadigheh S.A., Kashi S., 2018. Effectiveness of vacuum consolidation ...
  • [20]. Hadigheh S.A., Gravina R.J., 2016. Generalization of the Interface ...
  • [21]. Tabatabaeian A., Ghasemi A.R., 2020. The impact of MWCNT ...
  • [22]. Ghasemi A.R., Mohandes M., 2018. Comparison between the frequencies ...
  • [23]. Moniri Bidgoli A.M., Heidari-Rarani M., 2016. Axial buckling response ...
  • [24]. Ghasemi A.R., Mohammadi M.M., 2016. Residual stress measurement of ...
  • [25]. Ghasemi A.R., Mohandes M., 2018. Free vibration analysis of ...
  • [26]. Asaee Z., Taheri F., 2017. Enhancement of performance of ...
  • [27]. Banat D., Kolakowski Z., Mania R.J., 2016. Investigations of ...
  • [28]. Asaee Z., Mohamed M., Soumik S., Taheri F., 2017. ...
  • [29]. Asaee Z., Taheri F., 2018. A practical analytical model ...
  • [30]. Al-Masri R., Rasheed H.A., 2018. Buckling solutions of clamped-pinned ...
  • [31]. Yang J., Dong J., Kitipornchai S., 2019. Unilateral and ...
  • [32]. Chen D., Yang J., Kitipornchai S., 2019, Buckling and ...
  • [33]. Ghasemi A.R., Tabatabaeian A., Moradi M., 2018. Residual stress ...
  • [34]. Song M., Yang J., Kitipornchai S., Zhu W., 2017. ...
  • [35]. Chen D., Yang J., Kitipornchai S., 2015. Elastic buckling ...
  • [36]. Inagaki I., Tsutomu T., Yoshihisa S., Nozomu A., 2014. ...
  • [37]. Mordike B.L., Ebert T., 2001. Magnesium Properties - applications ...
  • [38]. Vlot A., Kroon E., La Rocca G., 1998. Impact ...
  • نمایش کامل مراجع