Approximation of Seismic Earth Pressure on Retaining Wall by Artificial Neural Network
Publish Year: 1390
Type: Conference paper
Language: English
View: 1,806
This Paper With 7 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
این Paper در بخشهای موضوعی زیر دسته بندی شده است:
Export:
Document National Code:
SEE06_354
Index date: 6 May 2011
Approximation of Seismic Earth Pressure on Retaining Wall by Artificial Neural Network abstract
Estimation of the seismic earth pressure is an important topic of research for the safe design of retaining wall in the seismic zone. Design of retaining wall needs the complete knowledge of earth pressures for both active and passive conditions. In the present work, the seismic earthpressure on retaining wall is calculated by artificial neural network (ANN). It is a common practice to consider the seismic accelerations in both horizontal and vertical directions in terms of equivalent static forces. Force-based analysis is used to compute seismic earth pressure. Then the ANN is created and the seismic earth pressures are evaluated at any conditions. A significant benefit of the ANN is its ability to learn relationships between variables with repeated exposure to those variables. Therefore, instead of deriving an analytical relationship from mathematical formulations, the ANN learns the relationship through an adaptive training process. Numerical example shows the merit of the ANN.
Approximation of Seismic Earth Pressure on Retaining Wall by Artificial Neural Network Keywords:
Approximation of Seismic Earth Pressure on Retaining Wall by Artificial Neural Network authors
a Heidari
Department of Civil Engineering, Shahrekord University, Shahrekord, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :