سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

A Fractile Model for Stochastic Interval Linear Programming Problems

Publish Year: 1400
Type: Journal paper
Language: English
View: 277

This Paper With 11 Page And PDF Format Ready To Download

Export:

Link to this Paper:

Document National Code:

JR_JOIE-14-2_023

Index date: 6 April 2021

A Fractile Model for Stochastic Interval Linear Programming Problems abstract

In this paper, we first introduce a new category of mathematical programming where the problem coefficients are interval random variables. These problems include two different kinds of ambiguity in the problem coefficients which are being interval and being random. We use Fractile method to solve these problems. In this method, using the existing method, we change the interval problem coefficients to random mode and then we solve the random problem using Fractile method. Also, a numerical example is presented to show the effectiveness of this model. Finally, we emphasize that this approach can be useful for the model with multi-objective as a generalized model in the future study.

A Fractile Model for Stochastic Interval Linear Programming Problems Keywords:

A Fractile Model for Stochastic Interval Linear Programming Problems authors

Hadi Nasseri

Department of Mathematics, University of Mazandaran, Babolsar, Iran

Salim Bavandi

Department of Mathematics, University of Mazandaran, Babolsar, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
Bavandi, S., Nasseri, S.H., & Triki, C. (2020). Optimal Decision ...
Bhurjee, A.K., & Panda, G. (2016). Sufficient optimality conditions and ...
Casella, G & Berger, R.L. (2001). Statistical Inference. DuxburyPress. ...
Chanas, S & Kuchta, D. (1996). Multiobjective programming in optimization ...
Charnes, A., & Cooper, W. W. (1959). Chance constrained programming. ...
Charnes, A., & Cooper, W. W. (1963). Deterministic equivalents for ...
Gen, M., & Cheng, R. (1997). Genetic Algorithms and Engineering ...
Geoffrion, A. M. (1967). Stochastic programming with aspiration or fractile ...
Grimmett, G. R., & Stirzaker, D. R. (2001).  Probability and ...
Hildenbrand, W. (1975). Core and Equilibria of a Large Economy. ...
Hladik, M. (2015). AF solutions and AF solvability to general ...
Hladik, M. (2014). How to determine basis stability in interval ...
Inuiguchi, M., & Kume, Y. (1994).Minimax regret solution to linear ...
Ishibuchi, H., & Tanaka, H. (1989). Formulation and analysis of ...
Jana, M., & Panda, G. (2014). Solution of nonlinear interval ...
Kall, P., & Mayer, J. (2004). Stochastic Linear Programming. Springer. ...
Kataoka, S. (1963). A stochastic programming model. Econometrica, 31, 181–196. ...
Knill,O. (2009). Probability Theory and Stochastic Processes with Applications, Overseas ...
Kruse R., & Meyer, K. D. (1987). Solving nonlinear interval ...
Matheron, G. (1975). Random Sets and Integral Geometry. New York: ...
Miranda, E., Couso, I., & Gil, P. (2005). Random intervals ...
Moore, E. R., Kearfott, R. B., & Cloud, M. J. ...
Nasseri, S. H., & Bavandi, S. (2018). Amelioration of Verdegay̕s ...
Nasseri S. H., & Bavandi S. (2017). A Suggested Approach ...
S. H. Nasseri & S. Bavandi (2019). Fuzzy Stochastic Linear ...
Sakawa, M., Yano, H., & Nishizaki, I. (2013).  Linear and ...
Sengupta, A., Pal, T. K., & Chakraborty, D. (2001). Interpretation ...
Shaocheng, T. (1994). Interval number and fuzzy number linear programming. ...
Subulan, K. (2020). An interval-stochastic programming based approach for a ...
Suprajitno, H., & Mohd, I. B. (2008). Interval Linear Programming, ...
Wang, L., & Jin, L. (2019). An interval type-2 fuzzy ...
نمایش کامل مراجع