TiO2-Coated Electrode for Plasma Dry Reformer for Synthesis Gas Production in Ambient Conditions

Publish Year: 1399
نوع سند: مقاله ژورنالی
زبان: English
View: 201

This Paper With 6 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_ACERPT-6-4_004

تاریخ نمایه سازی: 17 فروردین 1400

Abstract:

Conversion of methane to syngas via plasma technology is a cost-effective approach to obtaining syngas. Methane conversion by means of ceramic electrodes was significantly increased. In plasma reformer, while electrical discharge is available in gas, very active species such as electrons, radicals, ions, atoms, and excited molecules are produced and they function as catalysts. Methane and carbon dioxide gases at atmospheric temperature and pressure in the non-thermal with TiO2-coated electrode plasma reactor with an inner diameter of 9 mm are converted to hydrogen and carbon monoxide (syngas) through one chemical step. The main objective of this research was to investigate the effects of changes in feed flow rate and feed ratio on methane conversion and product selectivity, as well as product distribution. Furthermore, the results were obtained when three synthesized catalysts were inserted in a section             (3 mm) of plasma length (100 mm). The obtained results demonstrated that the voltage of 15 kV was required for methane conversion and hydrogen production. Reducing voltage and/or increasing the partial pressure ratio of methane to carbon monoxide in the reactor inlet resulted in the reduction of methane conversion rate. Moreover, according to the findings, increasing the ratio of carbon dioxide to methane would increase methane conversion and consequently, decrease the conversion of carbon dioxide. The conversion of methane and carbon dioxide was higher for co-precipitated Ce-Mn oxide support than those using the two other methods.

Authors

S. A. Mousavi

Hydrogen and Fuel Cell Research Laboratory, Chemical engineering Department, Faculty of Engineering, University of Kashan, Kashan, Isfahan, Iran

A. Irankhah

Hydrogen and Fuel Cell Research Laboratory, Chemical engineering Department, Faculty of Engineering, University of Kashan, Kashan, Isfahan, Iran

S. Beitlafteh

School of Chemistry, The University of Manchester, Oxford Road, Manchester M۱۳ ۹PL, England, United Kingdom

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  •  1.     Wang, Q., Spasova, B., Hessel, V., Kolb, G., “Methane ...
  • 2.     Shavelkina, M. B., Ivanov, P. P., Bocharov, A. N., ...
  • 3.     Bromberg, L., Cohn, D. R., Rabinovich, A., Alexeev, N., ...
  • 4.     Arcotumapathy, V., Vo, D. V. N., Chesterfield, D., Tin, ...
  • 5.     Zhang, Y. P., Li, Y., Wang, Y., Liu, C. ...
  • 6.     Bin, D., Xiu-ling, Z., Wei-min, G., Ren, H., “Study ...
  • 7.     Zhou, L. M., Xue, B., Kogelschatz, U., Eliasson, B., ...
  • 8.     Tu, X., Whitehead, J. C., “Plasma-catalytic dry reforming of ...
  • 9.     Tu, X., Whitehead, J. C., “Plasma dry reforming of ...
  • 10.   Tao, T., Bae, I. T., Woodruff, K. B., Sauer, ...
  • 11.   Yao, S. L., Ouyang, F., Nakayama, A., Suzuki, E., ...
  • 12.   Yao, S. L., Okumoto, M., Nakayama, A., Suzuki, E., ...
  • 13.   Li, M. W., Xu, G. H., Tian, Y. L., ...
  • 14.   Li, D., Li, X., Bai, M., Tao, X., Shang, ...
  • 15.   Wang, Q., Yan, B. H., Jin, Y., Cheng, Y., ...
  • 16.   Zhang, A. J., Zhu, A. M., Guo, J., Xu, ...
  • 17.   Goujard, V., Tatibouët, J. M., Batiot-Dupeyrat, C., “Use of ...
  • نمایش کامل مراجع