On mining fuzzy classi cation rules for imbalanced data
Publish place: 11th Iranian Conference on Fuzzy Systems
Publish Year: 1390
Type: Conference paper
Language: English
View: 1,703
This Paper With 8 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
Export:
Document National Code:
ICFUZZYS11_038
Index date: 26 July 2011
On mining fuzzy classi cation rules for imbalanced data abstract
Fuzzy rule-based classi cation system (FRBCS) is a popular machine learning technique for classi cation purposes. One of the major issues when applying it on imbalanceddata sets is its biased to the majority class, such that, it performs poorly in respect to the minority class. However many cases the minority classes are more important than the majority ones. In this paper, we have extended the basic FRBCS in order to decrease the side e ects of imbalanced data by employing data-mining criteria such as con dence and support. These measures are computed from information derived from data in the subspaces of each fuzzy rule. The experimental results show that the proposed method can improve the classi cation accuracy when applied on benchmark data sets
On mining fuzzy classi cation rules for imbalanced data Keywords:
On mining fuzzy classi cation rules for imbalanced data authors
Mohsen Rahmanian
Jahrom Higher Education Complex, Computer dept
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :