سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

On mining fuzzy classi cation rules for imbalanced data

Publish Year: 1390
Type: Conference paper
Language: English
View: 1,703

This Paper With 8 Page And PDF Format Ready To Download

Export:

Link to this Paper:

Document National Code:

ICFUZZYS11_038

Index date: 26 July 2011

On mining fuzzy classi cation rules for imbalanced data abstract

Fuzzy rule-based classi cation system (FRBCS) is a popular machine learning technique for classi cation purposes. One of the major issues when applying it on imbalanceddata sets is its biased to the majority class, such that, it performs poorly in respect to the minority class. However many cases the minority classes are more important than the majority ones. In this paper, we have extended the basic FRBCS in order to decrease the side e ects of imbalanced data by employing data-mining criteria such as con dence and support. These measures are computed from information derived from data in the subspaces of each fuzzy rule. The experimental results show that the proposed method can improve the classi cation accuracy when applied on benchmark data sets

On mining fuzzy classi cation rules for imbalanced data Keywords:

Imbalanced data-sets , Fuzzy rule based classication systems , Data-mining

On mining fuzzy classi cation rules for imbalanced data authors

Mohsen Rahmanian

Jahrom Higher Education Complex, Computer dept

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
Sofia Visa, " Fuzzy Classifiers for Imba]- anced Data Sets" ...
82 S5.99 93.20 54.70 G8.43 ...
_ L. Xu, MI. Chow, L. S. Taylor, "Data Nin- ...
SaWa, " Voting in fuzzy rule-based systems for pattern classification ...
Jos dlel Jesush, Francisco Herreraa, " A study [10] M. ...
vol. 159, no. 18, pp. 2378-2398 (2008) ...
_ _ G. NIansoori, I. J. Zolghadri, and S. [11] ...
of the behaviourc of linguistic fuzzy rule based classicatiom systems ...
D. Katebi, " A Weighting Functiom for In- proving Fuzzy ...
H. Ishibuchi and T. Nakashima, " Effect of rule weights ...
H. Ishibuchi and T. Nakashima, "Fuzzy rule selection by multi-obj ...
J. van den Berg, U. Kaymak, and W.-. _ den ...
MI. Kubat, R. Holte, and S. Matwin, " Ma- chine ...
A. Orriols-Puig, E. Bernado- MIansilla, K. Sastry, D.E. Goldberg, _ ...
N. Chawla, K. Bowyer, L. Hall, W. Synthetic minor- ...
ity over-sampling technique; , Journal Ar- _ Intellipent Research, vol. ...
_ P. Hart, " The condensed earest neighbor rule" , ...
T. Fawcett, F.J. Provost, " Adlaptive fraud dletection" , Dato ...
نمایش کامل مراجع