سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

Comparison of Four Data Mining Algorithms for Predicting Colorectal Cancer Risk

Publish Year: 1399
Type: Journal paper
Language: English
View: 361

This Paper With 9 Page And PDF Format Ready To Download

این Paper در بخشهای موضوعی زیر دسته بندی شده است:

Export:

Link to this Paper:

Document National Code:

JR_ZUMS-29-133_006

Index date: 30 April 2021

Comparison of Four Data Mining Algorithms for Predicting Colorectal Cancer Risk abstract

 Background and Objective: Colorectal cancer (CRC) is one of the most prevalent malignancies in the world. The early detection of CRC is not only a simple process, but it is also the key to its treatment. Given that data mining algorithms could be potentially useful in cancer prognosis, diagnosis, and treatment, the main focus of this study is to measure the performance of some data mining classifier algorithms in terms of predicting CRC and providing an early warning to the high-risk groups.  Materials and Methods: This study was performed in 468 subjects (194 CRC patients and 274 non-CRC cases). We used the CRC dataset from the Imam Hospital, Sari, Iran. The Chi-square feature selection method was utilized to analyze the risk factors. Then, four popular data mining algorithms were compared based on their performance in predicting CRC, and, finally, the best algorithm was identified.  Results: The best outcome was obtained by J-48 (F-Measure = 0.826, ROC=0.881, precision= 0.826 and sensitivity =0.827), Bayesian Net was the second-best performer (F-Measure = 0.718, ROC=0.784, precision= 0.719 and sensitivity=0.722). Random-Forest performed the third-best (F-Measure= 0.705, ROC=0.758, precision= 0.719, and sensitivity=0.712). Finally, the MLP technique performed the worst (F-Measure = 0.702, ROC=0.76, precision = 0.701 and sensitivity=0.703).                                                                        Conclusion: According to the results, we concluded that the J-48 could provide better insights than other proposed prediction models for clinical applications.

Comparison of Four Data Mining Algorithms for Predicting Colorectal Cancer Risk Keywords:

Comparison of Four Data Mining Algorithms for Predicting Colorectal Cancer Risk authors

Mostafa Shanbehzadeh

Dept. of Health Information Technology, School of Paramedical, Ilam University of Medical Sciences, Ilam, Iran.

Raoof Nopour

Dept.of Health Information Technology,School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran.

Hadi Kazemi-Arpanahi

Dept. of Health Information Technology, Abadan Faculty of Medical Sciences, Abadan, Iran.

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
REFERENCESSiegel RL, Miller KD, Goding Sauer A, et al. Colorectal ...
Keum N, Giovannucci E. Global burden of colorectal cancer: emerging ...
Kinar Y, Akiva P, Choman E, et al. Performance analysis ...
Ge H, Yan Y, Di Wu YH, Tian F. Potential ...
Roberts PO, de Souza TG, Grant BM, et al. Pathologic ...
Tsoi KK, Hirai HW, Chan FC, Griffiths S, Sung JJ. ...
Rieger AK, Mansmann UR. A Bayesian scoring rule on clustered ...
Goshayeshi L, Pourahmadi A, Ghayour-Mobarhan M, et al. Colorectal cancer ...
Taheri M, Tavakol M, Akbari ME, Almasi-Hashiani A, Abbasi M. ...
Chen H, Lin Z, Wu H, Wang L, Wu T, ...
Kop R, Hoogendoorn M, Ten Teije A, et al. Predictive ...
Gage MM, Hueman MT. Colorectal cancer surveillance: What is the ...
Nartowt B, Hart G, Muhammad W, Liang Y, Deng J. ...
Safdari R, Arpanahi HK, Langarizadeh M, Ghazisaiedi M, Dargahi H, ...
Wu X, Kumar V, Quinlan JR, et al. Top 10 ...
Liaw A, Wiener M. Classification and regression by random forest. ...
Amirkhani H, Rahmati M, Lucas PJ, Hommersom A. Exploiting experts' ...
Zhang S, Tjortjis C, Zeng X, Qiao H, Buchan I, ...
Baitharu TR, Pani SK. Analysis of data mining techniques for ...
Liu RS, Li HJ, Liang FX, et al. Diagnostic accuracy ...
Pillai L, Chouhan U. Comparative Analysis of machine learning algorithms ...
Vijayarani S, Dhayanand S. Data mining classification algorithms for kidney ...
Shah C, Jivani AG. Comparison of data mining classification algorithms ...
Abdar M, Kalhori SRN, Sutikno T, Subroto IMI, Arji G. ...
Sabouri S, Esmaily H, Shahidsales S, Emadi M. Survival prediction ...
Nartowt BJ, Hart GR, Roffman DA, et al. Scoring colorectal ...
Sha S, Du W, Parkinson A, Glasgow N. Relative importance ...
Chau R, Jenkins MA, Buchanan DD, et al. Determining the ...
Wang Q, Wei J, Chen Z, et al. Establishment of ...
Lualdi M, Cavalleri A, Battaglia L, et al. Early detection ...
Pourhoseingholi MA, Kheirian S, Zali MR. Comparison of basic and ...
Zhang B, Liang X, Gao H, Ye L, Wang Y. ...
Pourahmad S, Pourhashemi S, Mohammadianpanah M. Colorectal cancer staging using ...
Myte R, Gylling B, Häggström J, et al. One-carbon metabolism ...
Lu W, Fu DL, Kong XX, et al. FOLFOX treatment ...
Afshar S, Warden E, Manochehri H, Saidijam M. Application of ...
نمایش کامل مراجع