Quantitative analysis of p53 substitution mutation and breast cancer; An informative study in Iranian population
Publish place: Central Asian Journal of Medical and Pharmaceutical Sciences Innovation، Vol: 1، Issue: 1
Publish Year: 1400
Type: Journal paper
Language: English
View: 378
This Paper With 7 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
این Paper در بخشهای موضوعی زیر دسته بندی شده است:
Export:
Document National Code:
JR_CAJMPSI-1-1_002
Index date: 26 May 2021
Quantitative analysis of p53 substitution mutation and breast cancer; An informative study in Iranian population abstract
Genetic factors including genetic variations in important genes may influence breast cancer susceptibility. One of important gene variations is p53 codon 72 which might impact risk of breast cancer. There are three case-control genetic association studies regard to the relation of this polymorphism with breast cancer risk in Iranian females, but the outcomes are indecisive. So, a meta-analysis was made in Iranian population in this regard. The eligible studies were found using search in appropriate databases. So, the extracted information from comprised studies was examined by Open Meta analyst program. The analyzed data displayed that there is no substantial correlation of p53 codon 72 substitution with risk of breast cancer in CC vs. GG (OR= 0.844, 95%CI= 0.244-2.916, p= 0.789) and GC vs. GG (OR= 1.215, 95%CI= 0.880-1.676, p= 0.237) models in Iran. Regarding to the outcomes, the aforementioned polymorphism is not a molecular risk factor for breast cancer in Iranian population.
Quantitative analysis of p53 substitution mutation and breast cancer; An informative study in Iranian population Keywords:
Quantitative analysis of p53 substitution mutation and breast cancer; An informative study in Iranian population authors
Mojtaba Sabernezhad
Department of Biology, Faculty of Basic Sciences, University of Isfahan, Isfahan, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :