The Factor Structure of a Written English Proficiency Test: A Structural Equation Modeling Approach
Publish Year: 1390
Type: Journal paper
Language: English
View: 326
This Paper With 24 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
Export:
Document National Code:
JR_IJALS-3-2_002
Index date: 21 June 2021
The Factor Structure of a Written English Proficiency Test: A Structural Equation Modeling Approach abstract
The present study examined the factor structure of the University of Tehran English Proficiency Test (UTEPT) that aims to examine test takers’ knowledge of grammar, vocabulary, and reading comprehension. A Structural Equation Modelling (SEM) approach was used to analyse the responses of participants (N= 850) to a 2010 version of the test. A higher-order model was postulated to test if the underlying factor structure, obtained in a data-driven manner, corresponds with the proposed structure of the test. The results revealed an appropriate model fit with the data, pointing to the fact that the three sections of UTEPT, i.e., structure, vocabulary, and reading, and their sub-components, except for the restatement section of reading, are good indicators of written language proficiency as assessed by the UTEPT. It was also found that the three sections assess distinctive constructs. The findings suggest that UTEPT is a valid measure of the written language proficiency of Ph.D. applicants to University of Tehran.
The Factor Structure of a Written English Proficiency Test: A Structural Equation Modeling Approach Keywords:
Language Proficiency , University of Tehran English Proficiency Test (UTEPT) , factor structure , Structural Equation Modelling
The Factor Structure of a Written English Proficiency Test: A Structural Equation Modeling Approach authors
Seyyed Mohammad Alavi
University of Tehran
Shiva Kaivanpanah
University of Tehran
Akram Nayernia
University of Tehran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :