سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

پیش بینی میان مدت و کوتاه مدت بار با بکارگیری شبکه های عصبی راف و الگوریتم بهینه سازی جهش ملخ

Publish Year: 1399
Type: Journal paper
Language: Persian
View: 539

This Paper With 20 Page And PDF Format Ready To Download

این Paper در بخشهای موضوعی زیر دسته بندی شده است:

Export:

Link to this Paper:

Document National Code:

JR_ICI-4-2_004

Index date: 11 July 2021

پیش بینی میان مدت و کوتاه مدت بار با بکارگیری شبکه های عصبی راف و الگوریتم بهینه سازی جهش ملخ abstract

با افزایش جمعیت و رشد جوامع صنعتی تغییرات بار مصرفی در شبکه های قدرت غیر قابل اجتناب بوده و لازم است میزان بار مورد نیاز شبکه، پیش بینی شود. پیش بینی بار ساعتی به صورت میان مدت می تواند معیار مناسبی برای برآورد بار و انرژی باشد. همچنین این پیش بینی الگوی خوبی برای پیش بینی کوتاه مدت بار خواهد بود. در این مقاله روش جدیدی برای پیش بینی ساعتی بار به صورت میان مدت و کوتاه مدت با استفاده از شبکه های عصبی راف و الگوریتم جهش ملخ ارائه می گردد. در این مقاله یک شبکه عصبی راف بهبود یافته ارائه شده است. شبکه های عصبی راف نوعی از ساختارهای عصبی هستند که براساس نرون های راف طراحی می شوند. یک نرون راف را می توان به صورت زوجی از نرون ها در نظر گرفت که به نرون های کران بالا و کران پایین مرسوم هستند. همانند شبکه های پرسپترون چند لایه شبکه عصبی راف نیز می تواند با استفاده از الگوریتم پس انتشار خطا مبتنی بر گرادیان نزولی آموزش داده شود. با این حال این الگوریتم دارای مشکلاتی مانند در دام افتادن در کمینه های محلی است که در این مقاله به کمک الگوریتم جهش ملخ، بر این کاستی غلبه می شود. برای شبیه سازی روش پیشنهادی در پیش بینی بار روزانه، شبکه سراسری برق دبی به منظور اعمال شبکه های عصبی راف و ترکیب آن با الگوریتم جهش ملخ ارائه می گردد که نتایج نشانگر موفقیت آمیز بودن روش های پیشنهادی می باشد.  

پیش بینی میان مدت و کوتاه مدت بار با بکارگیری شبکه های عصبی راف و الگوریتم بهینه سازی جهش ملخ Keywords:

پیش بینی میان مدت و کوتاه مدت بار با بکارگیری شبکه های عصبی راف و الگوریتم بهینه سازی جهش ملخ authors