ناشر تخصصی کنفرانس های ایران

لطفا کمی صبر نمایید

Publisher of Iranian Journals and Conference Proceedings

Please waite ..
Publisher of Iranian Journals and Conference Proceedings
Login |Register |Help |عضویت کتابخانه ها
Paper
Title

Diagnosis of Multiple Sclerosis Disease in Brain MRI Images using Convolutional Neural Networks based on Wavelet Pooling

Year: 1400
COI: JR_JADM-9-2_003
Language: EnglishView: 88
This Paper With 9 Page And PDF Format Ready To Download

Buy and Download

با استفاده از پرداخت اینترنتی بسیار سریع و ساده می توانید اصل این Paper را که دارای 9 صفحه است به صورت فایل PDF در اختیار داشته باشید.
آدرس ایمیل خود را در کادر زیر وارد نمایید:

Authors

A. Alijamaat - Computer Engineering Department, Rasht Branch, Islamic Azad University, Rasht, Iran.
A. NikravanShalmani - Computer Engineering Department, Karaj Branch, Islamic Azad University, Karaj, Iran.
P. Bayat - Computer Engineering Department, Rasht Branch, Islamic Azad University, Rasht, Iran.

Abstract:

Multiple Sclerosis (MS) is a disease that destructs the central nervous system cell protection, destroys sheaths of immune cells, and causes lesions. Examination and diagnosis of lesions by specialists is usually done manually on Magnetic Resonance Imaging (MRI) images of the brain. Factors such as small sizes of lesions, their dispersion in the brain, similarity of lesions to some other diseases, and their overlap can lead to the misdiagnosis. Automatic image detection methods as auxiliary tools can increase the diagnosis accuracy. To this end, traditional image processing methods and deep learning approaches have been used. Deep Convolutional Neural Network is a common method of deep learning to detect lesions in images. In this network, the convolution layer extracts the specificities; and the pooling layer decreases the specificity map size. The present research uses the wavelet-transform-based pooling. In addition to decomposing the input image and reducing its size, the wavelet transform highlights sharp changes in the image and better describes local specificities. Therefore, using this transform can improve the diagnosis. The proposed method is based on six convolutional layers, two layers of wavelet pooling, and a completely connected layer that had a better amount of accuracy than the studied methods. The accuracy of ۹۸.۹۲%, precision of ۹۹.۲۰%, and specificity of ۹۸.۳۳% are obtained by testing the image data of ۳۸ patients and ۲۰ healthy individuals.

Keywords:

deep learning , Multiple Sclerosis (MS) , Convolutional Neural Network (CNN) , wavelet

Paper COI Code

This Paper COI Code is JR_JADM-9-2_003. Also You can use the following address to link to this article. This link is permanent and is used as an article registration confirmation in the Civilica reference:

https://civilica.com/doc/1253733/

How to Cite to This Paper:

If you want to refer to this Paper in your research work, you can simply use the following phrase in the resources section:
Alijamaat, A. and NikravanShalmani, A. and Bayat, P.,1400,Diagnosis of Multiple Sclerosis Disease in Brain MRI Images using Convolutional Neural Networks based on Wavelet Pooling,https://civilica.com/doc/1253733

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :

  • C. H. Polman et al., "Diagnostic criteria for multiple sclerosis: ...
  • D. S. Reich, C. F. Lucchinetti, and P. A. Calabresi, ...
  • E. Erbayat Altay, E. Fisher, S. E. Jones, C. Hara-Cleaver, ...
  • P. Mao and P. H. Reddy, "Is multiple sclerosis a ...
  • M. A. Battaglia, P. Zagami, and M. M. Uccelli, "A ...
  • M. Azami, M. H. YektaKooshali, M. Shohani, A. Khorshidi, and ...
  • C. Miltenburger and G. Kobelt, "Quality of life and cost ...
  • N. N. Sommer et al., "Multiple Sclerosis: Improved Detection of ...
  • A. J. Thompson et al., "Diagnosis of multiple sclerosis: ۲۰۱۷ ...
  • M. Filippi et al., "MRI criteria for the diagnosis of ...
  • R. Zivadinov, M. Zorzon, R. De Masi, D. Nasuelli, and ...
  • S. Jain et al., "Automatic segmentation and volumetry of multiple ...
  • J. D. Dworkin et al., "An Automated Statistical Technique for ...
  • Y. Zhao et al., "A level set method for multiple ...
  • F. Chollet, Deep Learning with Python. Manning Publications Co., ۲۰۱۷ ...
  • M. D. Zeiler and R. Fergus, "Stochastic Pooling for Regularization ...
  • N. Boussion et al., "A multiresolution image based approach for ...
  • J. Sun, M. Yao, B. Xu, and P. Bel, "Fabric ...
  • M. Stéphane, "CHAPTER ۷ - Wavelet Bases," in A Wavelet ...
  • W. van Drongelen, Signal processing for neuroscientists: Introduction to the ...
  • O. Ghribi, L. Sellami, M. Ben Slima, A. Ben Hamida, ...
  • Y.-D. Zhang, Y. Zhang, P. Phillips, Z. Dong, and S. ...
  • W. Xueyan and L. Mason, "Multiple Sclerosis Slice Identification by ...
  • C. Wachinger, M. Reuter, and T. Klein, "DeepNAT: Deep convolutional ...
  • H. Chen, Q. Dou, L. Yu, J. Qin, and P.-A. ...
  • W. Wells, W. E. L. Grimson, R. Kikinis, and F. ...
  • F. Forbes, S. Doyle, D. García-Lorenzo, C. Barillot, and M. ...
  • Y.-D. Zhang, C. Pan, J. Sun, and C. Tang, "Multiple ...
  • S.-H. Wang et al., "Multiple Sclerosis Identification by ۱۴-Layer Convolutional ...
  • T. Williams and R. Li, "Wavelet Pooling for Convolutional Neural ...
  • A. M. Rossetto and W. Zhou, "Improving Classification with CNNs ...
  • A. A. M. Abadi, P. Barham, E. Brevdo, Z. Chen, ...
  • Research Info Management

    Certificate | Report | من نویسنده این مقاله هستم
    این Paper در بخشهای موضوعی زیر دسته بندی شده است:

    اطلاعات استنادی این Paper را به نرم افزارهای مدیریت اطلاعات علمی و استنادی ارسال نمایید و در تحقیقات خود از آن استفاده نمایید.

    Scientometrics

    The specifications of the publisher center of this Paper are as follows:
    Type of center: Azad University
    Paper count: 6,220
    In the scientometrics section of CIVILICA, you can see the scientific ranking of the Iranian academic and research centers based on the statistics of indexed articles.

    Share this page

    More information about COI

    COI stands for "CIVILICA Object Identifier". COI is the unique code assigned to articles of Iranian conferences and journals when indexing on the CIVILICA citation database.

    The COI is the national code of documents indexed in CIVILICA and is a unique and permanent code. it can always be cited and tracked and assumed as registration confirmation ID.

    Support