سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

Facial Expression Recognition based on Image Gradient and Deep Convolutional Neural Network

Publish Year: 1400
Type: Journal paper
Language: English
View: 279

This Paper With 11 Page And PDF Format Ready To Download

این Paper در بخشهای موضوعی زیر دسته بندی شده است:

Export:

Link to this Paper:

Document National Code:

JR_JADM-9-2_012

Index date: 11 August 2021

Facial Expression Recognition based on Image Gradient and Deep Convolutional Neural Network abstract

Facial Expression Recognition (FER) is one of the basic ways of interacting with machines and has been getting more attention in recent years. In this paper, a novel FER system based on a deep convolutional neural network (DCNN) is presented. Motivated by the powerful ability of DCNN to learn features and image classification, the goal of this research is to design a compatible and discriminative input for pre-trained AlexNet-DCNN. The proposed method consists of 4 steps: first, extracting three channels of the image including the original gray-level image, in addition to horizontal and vertical gradients of the image similar to the red, green, and blue color channels of an RGB image as the DCNN input. Second, data augmentation including scale, rotation, width shift, height shift, zoom, horizontal flip, and vertical flip of the images are prepared in addition to the original images for training the DCNN. Then, the AlexNet-DCNN model is applied to learn high-level features corresponding to different emotion classes. Finally, transfer learning is implemented on the proposed model and the presented model is fine-tuned on target datasets. The average recognition accuracy of 92.41% and 93.66% were achieved for JAFEE and CK+ datasets, respectively. Experimental results on two benchmark emotional datasets show promising performance of the proposed model that can improve the performance of current FER systems.

Facial Expression Recognition based on Image Gradient and Deep Convolutional Neural Network Keywords:

Facial expression recognition , deep convolutional neural network , three-channel of the image , AlexNet DCNN , Transfer learning

Facial Expression Recognition based on Image Gradient and Deep Convolutional Neural Network authors

M. R. Fallahzadeh

Department of Technical and engineering, Central Tehran Branch, Islamic Azad University, Iran.

F. Farokhi

Department of Technical and engineering, Central Tehran Branch, Islamic Azad University, Iran.

A. Harimi

Department of Technical and engineering, Shahrood Branch, Islamic Azad University, Iran.

R. Sabbaghi-Nadooshan

Department of Technical and engineering, Central Tehran Branch, Islamic Azad University, Iran.

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
A. Majumder, L. Behera, and V.K. Subramanian, "Automatic facial expression ...
Y. Din, Q. Zhao, B. Li, and X. Yuan, "Facial ...
JY. Jung, SW. Kim, CH. Yoo, WJ. Park, and S.J. ...
J. Deng, G. Pang, Z. Zhang, Z. Pang, H. Yang, ...
M. Z. Uddin, M.M. Hassan, A. Almogren, A. Alamri, M. ...
Y. Zhang and Q. Ji, "Active and dynamic information fusion ...
A. Panning, A.K. Al-Hamadi, R. Niese, and B. Michaelis, "Facial ...
C. Shan, S. Gong and P.W. McOwan. "Facial expression recognition ...
W. Liu, Y. Wang, and S. Li, "LBP feature extraction ...
L. Wang and k. Wang, R. Li, "Unsupervised feature selection ...
A. Sedaghat, M. Mokhtarzade, and H. Ebadi, "Uniform robust scale-invariant ...
B. Yang, J. Cao, R. Ni, and Y. Zhang. "Facial ...
B.F. Wu and C.H. Lin, "Adaptive feature mapping for customizing ...
J.H. Kim, B.G. Kim, P.P. Roy, and D.M. Jeong, "Efficient ...
S. Xie and H. Hu, "Facial expression recognition using hierarchical ...
Z Yu, G. Liu, Q. Liu, and J. Deng, "Spatio-temporal ...
M. Garcia and S. Ramirez, "Deep Neural Network Architecture: Application ...
P. Lucey, J.F. Cohn, T. Kanade, J. Saragih, Z. Ambadar, ...
H. Li, J. Sun, Z. Xu, and L. Chen, "Multimodal ...
J. Zhao, X. Mao, and L. Chen, "Learning deep features ...
C. Zhang, H. Zhang, J. Qiao, D. Yuan, and M. ...
U. Côté-Allard, C.L. Fall, A. Drouin, A. Campeau-Lecours, C. Gosselin, ...
C. Deng, Y. Xue, X. Liu "Active transfer learning network: ...
K. Simonyan and A. Zisserman, "Very deep convolutional networks for ...
K. He, X. Zhang, S. Ren, and J. Sun, "Deep ...
C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. ...
N. Ketkar, "Deep Learning with Python," Springer, ۲۰۱۷ ...
V. Nair and G.E. Hinton, "Rectified linear units improve restricted ...
T. Kanade, J.F. Cohn, and Y. Tian, "Comprehensive database for ...
F. Chollet, "Deep Learning with Python," Springer, ۲۰۱۸ ...
A. Harimi, A. Shahzadi, A.R. Ahmadifard, and K. Yaghmaie, "Classification ...
M.W. Huang, Z.W. Wang, and Z.L. Ying, "A new method ...
Z.L. Ying, Z.W. Wang, and M.W. Huang, "Facial expression recognition ...
L. Du and H. Hu, "Modified classification and regression tree ...
S. Al-Sumaidaee, S. Dlay, "Facial expression recognition using local Gabor ...
S. Xie and H Hu, "Facial expression recognition with FRR-CNN," ...
نمایش کامل مراجع