Startup time improvement of combined cycle power plants based on ‎stream splitting concept for heat recovery steam generators ‎

Publish Year: 1396
نوع سند: مقاله ژورنالی
زبان: English
View: 227

This Paper With 16 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_GPJU-5-2_004

تاریخ نمایه سازی: 23 مرداد 1400

Abstract:

One of the main components in combined cycles is the heat recovery steam generator (HRSG) which is responsible for energy recovery from gas turbine exhaust stream and produce superheated steam. In this paper, driving force plot and exergy analysis is used to study the behavior of heat exchangers of an HRSG in base case and off design conditions. The results indicated that performance of high pressure super heaters is far from their ideal operation. Based on this conclusion, a new configuration for the HRSG is proposed to boost its performance. This new configuration is based on split concept where it splits the hot flue gas to bypass the high pressure superheats. Therefore more energy is delivered to the high pressure evaporator and consequently steam production rate increases. Another advantage of this configuration is that it reduces start up time of the HRSG and consequently decreases start up time of the plant which results in higher flexibility of the system. To examine the applicability of the proposed approach, it is used to improve start up time in an existing combined cycle power plant. The results indicate that pressure and mass flow rate of HP stream reaches to its design point almost ۲۰ minutes sooner. Finally, a sensitivity analysis is performed on the effect of split ratio on the power production. The results show that there is an optimum value for split ratio in which power production of steam turbine is maximized.

Keywords:

Combined cycle power plant , HRSG , Stream splitting , Start up time

Authors

Seyed Abootorab Moosazadeh Moosavi

Department of Energy, Tehran North Branch, Islamic Azad University, Tehran, Iran

Mostafa Mafi

Department of Mechanical Engineering, Imam Khomeini International University, Qazvin, Iran

Abdolrazzagh Kaabi Nejadian

Department of Energy, Tehran North Branch, Islamic Azad University, Tehran, Iran

Gholamreza Salehi

Energy Department, Petroleum University of Technology (PUT), Mahmoudabad, Iran

Masoud Torabi Azad

Department of Energy, Tehran North Branch, Islamic Azad University, Tehran, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Alobaid, F., Pfeiffer, S., Epple, B., Seon, C. Y. & ...
  • Alobaid, F., Postler, R., Ströhle, J., Epple, B. & Kim, H. G. ...
  • Arriola-Medellín, A., Manzanares-Papayanopoulos, E. & Romo-Millares, C. (۲۰۱۴). Diagnosis and ...
  • Aspentech. Aspen energy analyzer Version ۸.۴. (۲۰۱۳). Retrieved from https://www.aspentech.com/en/products/pages/aspenenergy-analyzerBassily, ...
  • Bassily, A. (۲۰۱۳), Modeling, analysis, and modifications of different GT ...
  • Dincer, I. & Cengel, Y.A. (۲۰۰۱). Energy, entropy and exergy ...
  • Feng, H., Zhing, W., Wu, Y. & Tong S. (۲۰۱۴). ...
  • Fernández-Polanco, D. & Tatsumi, H. (۲۰۱۶). Optimum energy integration of ...
  • Franco, A. & Casarosa, C. (۲۰۰۲). On some perspectives for ...
  • Franco, A. & Russo, A. (۲۰۰۲). Combined cycle plant efficiency ...
  • Ghorbani, B., Hamedi, M. H. & Amidpour, M. (۲۰۱۶). Exergoeconomic ...
  • Ghorbani, B., Salehi, G. R., Ghaemmaleki, H., Amidpour, M. & ...
  • Khoshgoftarmanesh, M.H. Vazini Modabber, H. & Mazhari,V. (۲۰۱۶). Techno-Economic Assessment ...
  • Lemmon, E., Huber, M. & McLinden, M. (۲۰۰۷). REFPROP, NIST ...
  • Linnhoff, B. & Ahmad, S. (۱۹۹۰). Cost optimum heat exchanger ...
  • Linnhoff, B. & Vredeveld, R. (۱۹۸۴). Pinch technology has come ...
  • Linnhoff, B. (۱۹۷۹). Thermodynamic analysis in the design of process ...
  • Manassaldi, J.I., Mussati, S.F. & Scenna, N.J. (۲۰۱۱). Optimal synthesis ...
  • Marmolejo-Correa, D. & Gundersen, T. (۲۰۱۲). A comparison of exergy ...
  • Mertens, N., Alobaid, F., Lanz, T., Epple, B. & Kim, ...
  • Mohagheghi, M. & Shayegan, J. (۲۰۰۹). Thermodynamic optimization of design ...
  • Nadir, M. & Ghenaiet, A. (۲۰۱۵). Thermodynamic optimization of several ...
  • Quijera, J. A. & Labidi, J. (۲۰۱۳). Pinch and exergy ...
  • Quijera, J. A., García, A., Alriols, M. G. & Labidi, ...
  • Sheikhi, S., Ghorbani, B., Shirmohammadi, R. & Hamedi, M. H. ...
  • Sheikhi, S., Ghorbani, B., Shirmohammadi, R. & Hamedi, M. H., ...
  • Srinivas, T., Gupta,A. & Reddy, B. (۲۰۰۸). Sensitivity analysis of ...
  • Tajik Mansouri, M., Ahmadi, P., Ganjeh Kaviri, A. & Nazri Mohd Jaafar, M. ...
  • Vandani, A. M. K., Bidi, M. & Ahmadi, F. (۲۰۱۵). ...
  • Woudstra, N., Woudstra, T., Pirone, A. & Stelt, T. V. ...
  • Yoon, S. G., Lee, J. & Park, S. (۲۰۰۷). Heat ...
  • Zebian, H. & Mitsos A. (۲۰۱۴). A split concept for ...
  • Zhang, G., Zheng, J., Yang, Y. & Liu, W. (۲۰۱۶). ...
  • نمایش کامل مراجع