سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

مدلسازی تاثیرات جریان های ترافیکی بر آلودگی هوای شهر شیراز

Publish Year: 1396
Type: Journal paper
Language: Persian
View: 306

This Paper With 18 Page And PDF Format Ready To Download

این Paper در بخشهای موضوعی زیر دسته بندی شده است:

Export:

Link to this Paper:

Document National Code:

JR_SCJS-15-1_012

Index date: 1 November 2021

مدلسازی تاثیرات جریان های ترافیکی بر آلودگی هوای شهر شیراز abstract

سابقه و هدف: در کشور ایران حمل و نقل و جریان­های ترافیکی بیشترین علت آلودگی هوا را تشکیل می­دهند. بر­همین اساس مساله بررسی تاثیرات حمل و نقل و جریان­های ترافیکی بر کیفیت هوا خصوصا در مناطق شهری و انجام پیش­بینی­ها و برنامه­ریزی­های لازم متناسب با آن، امری ضروری بحساب می­آید. با این­حال متاسفانه در این زمینه کار­های زیادی در ایران صورت نگرفته است. شناسایی منابع آلاینده از مهم­ترین و زمان­بر ترین مراحل مدل­سازی آلودگی هواست. برای مدل­سازی آلودگی هوای یک منطقه نمی­توان تنها یک متغیر را در نظر گرفت؛ بلکه باید متغیر­های فراوانی را مورد مطالعه، بررسی و برنامه­ریزی قرار داد. برخی اقدامات، تغییرات محسوسی در وضعیت آلودگی هوای کلان شهر­ها ایجاد می­کند. بنابراین، انجام یکسری اقدامات می­تواند کاهش آلودگی هوا را به دنبال داشته باشد که اتخاذ روش­های نوین سنجش آلاینده­های هوا یکی آنهاست. هدف اصلی این تحقیق ارائه مدلی هوش­مند است که بتوان به کمک آن در شرایط خیابان­های شهری غلظت آلاینده­هایی از قبیل ،    و CO را با دقت مناسبی تخمین زد و با بررسی علل و عوامل تولید این آلاینده­ها و پیش­بینی آلودگی هوا، اقدامات و برنامه­ریزی­های لازم در راستای مدیریت و کنترل آلودگی هوا را انجام داد.مواد و روش ها: در این مقاله یک مدل شبکه عصبی و یک مدل غیر­خطی مبتنی بر فضای حالت بر مبنای ترافیک شهر شیراز طراحی شده است. در این مدل­سازی غلظت آلاینده­های  مورد بررسی قرار گرفته و نهایتا با استفاده از فیلتر کالمن برای یک دوره ۲۴ ساعته پیش­بینی شده است. این مدل­سازی برمبنای رابطه بین غلظت آلاینده­ها و ترافیک و آلودگی اولیه و اطلاعات هواشناسی می­باشد. الگوریتم فیلتر کالمن توسعه یافته با استفاده از داده­ی آلودگی و ترافیکی و هم­چنین داده­های هواشناسی به منظور پیش­بینی ۲۴ ساعته آلودگی نقاط مختلف شهر شیراز انجام گرفت. مشخصه کلیدی چنین سیستمی این است که رفتار آن با تغییرات آلودگی در کوتاه مدت منطبق می ­شود و نیاز به تنظیمات مکرر ندارد. روش شبکه عصبی و فیلتر کالمن به اطلاعات شهر شیراز اعمال شد.نتایج و بحث: در این کار به بررسی داده­های ترافیکی و داده­های آلودگی ناشی از غلظت آلاینده­ها پرداخته شده، سپس تلاش شده است که داده­های آلودگی با نقاط معنی­دار شهر شیراز تطبیق داده­ شود و بسیاری از داده­های آلودگی و ترافیکی به دلیل عدم تطابق با یکدیگر از نظر مکانی حذف شدند. در نهایت مدل­سازی بر اساس آن بهنگام شده و نتیجه این مطالعات با نتایج واقعی تطبیق داده شد. این ساختار مدل غیرخطی استفاده تکاملی و انعطاف­پذیری را ارائه می­دهد. به این معنا که ارزیابی کلی عملکرد مدل می­تواند به راحتی با اضافه یا کم کردن متغیر جدید انجام گیرد. از طرفی در صورت در اختیار داشتن داده­های متناظر با هر ایستگاه جدید دیگر می­توان براحتی مطالعات را برای نقاط دیگر شهر شیراز بسط داد. به این ترتیب اگر ترافیک در بعضی نقاط شهر شیراز در دسترس باشد، می­توان با بعضی مانورهای ترافیکی آلودگی را به سمت­های دیگر بسط داده و در مناطق بحرانی کاهش داد.نتیجه گیری: نتایج بصورت آزمایشی نشان می­ دهد که مدل ها و  خصوصا مدل فیلتر کالمن توسعه یافته غلظت آلاینده ­ها را بخوبی پیش­بینی می­ کند.

مدلسازی تاثیرات جریان های ترافیکی بر آلودگی هوای شهر شیراز Keywords:

مدلسازی تاثیرات جریان های ترافیکی بر آلودگی هوای شهر شیراز authors

رضیه قنبری فرد

گروه مهندسی قدرت و کنترل، دانشکده مهندسی برق و کامپیوتر، دانشگاه شیراز، شیراز، ایران

علی اکبر صفوی

گروه مهندسی قدرت و کنترل، دانشکده مهندسی برق و کامپیوتر، دانشگاه شیراز، شیراز، ایران

پیمان ستوده

گروه مهندسی قدرت و کنترل، دانشکده مهندسی برق و کامپیوتر، دانشگاه شیراز، شیراز، ایران

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
Hassan A.A, Crowther J.M. Modelling of fluid flow and pollutant ...
Branis M. Air quality of Prague: traffic as a main ...
Kim Y, Guldmann J.M. Impact of traffic flows and wind ...
Gokhale S. Traffic flow pattern and meteorology at two distinct ...
Keuken M.P. Elemental carbon as an indicator for evaluating the ...
Marsik T, Johnson R. Model for Estimation of Traffic Pollutant ...
Zolghadri A, Cazaurang F. Adaptive nonlinear state-space modelling for the ...
Safavi A.A. Wavelet-based neural network and multiresolution analysis with applications ...
Haykin S. Neural networks-a comprehensive foundation. ۲nd Ed, Prentic-Hall; ۱۹۹۹ ...
Ding X, Canu S, Denceux T. “Neural network model for ...
Winer N. Extrapolation, Introduction, and Smoothing of Stationary Time Series. ...
Kalman R. E. A New Approach to Linear Filtering and ...
Brown R. G, Hwang P. Y. C. Introduction to Random ...
Young P.C, Ng C.N, Lane K, Parker D. Recursive forecasting, ...
نمایش کامل مراجع