یک مقایسه بین مدل های اقتصادسنجی ساختاری , سری زمانی و شبکه عصبی برای بیش بینی نرخ ارز
Publish place: Journal of Economic Research، Vol: 40، Issue: 2
Publish Year: 1384
نوع سند: مقاله ژورنالی
زبان: Persian
View: 322
This Paper With 35 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
این Paper در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JTET-40-2_008
تاریخ نمایه سازی: 19 آبان 1400
Abstract:
در این مقاله استفاده از مدل های شبکه عصبی مصنوعی (ANN) و برخی الگوهای متداول در زمینه پیش بینی نرخ ارز، مورد آزمون و تحلیل قرار گرفته بدین صورت که، عملکرد پنج الگوی رگرسیون خطی در مقایسه با شبکه های عصبی مصنوعی، برای پیش بینی نرخ ارز اسمی (ریال ایران به دلار ایالات متحده آمریکا) مورد بررسی قرار می گیرد. الگوهای رگرسیون خطی عبارتند از روش باکس- جنکینز (الگوی میانگین متحرک انباشته خود همبسته)، فرایند گام تصادفی و سه تصریح مختلف بر اساس نظریه برابری قدرت خرید (PPP). هدف اصلی این مقاله، آزمون این فرضیه است که آیا شبکه های عصبی مصنوعی با توان براورد روابط غیرخطی، دارای نتایج بهتر و قابل مقایسه در پیش بینی نرخ ارز نسبت به الگوهای سنتی، به خصوص الگوی گام تصادفی اند یا خیر؟ مقایسه مذکور برای مشاهدات داخل نمونه، براورد الگوها و خارج از نمونه برای افق های پیش بینی رو به جلوی یک، شش و دوازده ماهه انجام می پذیرد. در حالت کلی، نتایج به دست آمده حاکی از دشوار بودن پیش بینی نرخ ارز، توسط الگوهای ساختاری اقتصادی است، این نتایج هماهنگ با مطالعات قبلی در این زمینه است. بدین صورت که الگوی (فرایند) گام تصادفی نسبت به الگوهای ساختاری پولی در پیش بینی نرخ ارز از عملکرد بهتری برخوردار است . در مقایسه مستقیم عملکرد مدل های (خطی) اقتصادسنجی ساختاری و سری زمانی با شبکه های عصبی (غیرخطی) و با داده های ماهانه، مدل های شبکه های عصبی مصنوعی به وضوح از قدرت بیشتری در زمینه پیش بینی نرخ ارز برخوردارند. طبقه بندی JEL:C۱۹,C۲۲,B۲۳
Keywords:
الگوهای ساختاری اقتصادی , برابری قدرت خرید (PPP) , پیش بینی نرخ ارز , شبکه های عصبی مصنوعی , مدل های خطی و غیرخطی