Predicting Bankruptcy of Companies using Data Mining Models and Comparing the Results with Z Altman Model
Publish Year: 1397
نوع سند: مقاله ژورنالی
زبان: English
View: 245
This Paper With 14 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
این Paper در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJFMA-3-10_003
تاریخ نمایه سازی: 13 آذر 1400
Abstract:
One of the issues helping make investment decisions is appropriate tools and models to evaluate financial situation ۰f the organization. By means of these tools, investors can analyze financial situation of the organization and identify financial distress or an ideal condition, they become aware of making decisions to invest in appropriate conditions. The main objective of this study is to evaluate the power of using data mining models which are among new tools of prediction. This tool was used to predict the bankruptcy of companies listed in Tehran stock exchange and comparison the results with the Altman model as one of the prevalent methods of prediction the bankruptcy of a company. The research data includes information of all companies listed in Tehran stock exchange during the years ۲۰۱۳ to ۲۰۱۸ subjected to Title ۱۴۱ of the law of trade and were bankrupt. Variables used in both models were five financial ratios. The data mining models on the average in the base year had a predictive ability of ۹۲.۴ percent and the Altman model had a predictive ability of ۸۲.۴۱ percent. Considering the results, it was shown that the data mining model has more power to predict bankruptcy.
Keywords:
Authors
somaye fathi
Department of Accounting, Boroujerd Girls&#۰۳۹; Technical University, Lorestan, Iran (Corresponding author)
Samira Saif
Department of Accounting, Payame Noor University, Nahavand, Hamadan, Iran
Zohre Heydari
Department of Accounting, Kosar University of Bojnord, Bojnord, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :