Optimisation of Trapped Vortex Cavity for Airfoil Separation Control

Publish Year: 1401
نوع سند: مقاله ژورنالی
زبان: English
View: 210

This Paper With 13 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

این Paper در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_JAFM-15-1_016

تاریخ نمایه سازی: 8 دی 1400

Abstract:

The effects of a Trapped Vortex Cavity (TVC) on the aerodynamic performance of a NACA ۰۰۲۴ airfoil at a constant angle of attack (AoA) of ۱۴◦ were investigated in this study. It was observed that mass suction (MFR) was required to stabilise the vortex within the cavity segment. Lift to drag ratio (L/D) and MFR were chosen as performance objectives, along with a fully attached flow constraint (flow separation at X/c ≥ ۹۵% ). Parametric analysis was carried on the baseline airfoil with and without suction and compared to the airfoil with TVC with and without suction. It was observed that L/D increases as MFR increases for a baseline airfoil, and flow separation is delayed at high suction values (MFR = ۰.۲ kg/s). The TVC modifies the pressure distribution on the baseline airfoil when MFR is applied to the cavity section and there is a significant increase in lift; thus, L/D increases and flow separation is delayed. A lower value of MFR = ۰.۰۸ kg/s is sufficient to stabilise the vortex and improve the efficiency of the TVC airfoil. The findings of these parametric studies were used to do a multi-objective optimisation using a genetic algorithm to attain the desired cavity shape while achieving the largest L/D and the lowest MFR (that is proportional to the power required for control) with a fully attached flow constraint. It was found that mass suction and cavity shape both had an equal influence on flow control. The Pareto optimal front yielded a series of optimum designs. One of them was subjected to an off-design analysis in order to validate its performance at other incidences. It was observed that it performs better than the baseline airfoil, with an improved L/D and an increase in stall angle from ۱۰◦ to ۱۴◦.

Authors

C. Panigrahi

Department of Aerospace Engineering, Indian Institute of Space Science and Technology, Thiruvananthapuram, Kerala, ۶۹۵۵۴۷, India

R. Chawla

Department of Aerospace Engineering, Indian Institute of Space Science and Technology, Thiruvananthapuram, Kerala, ۶۹۵۵۴۷, India

M. T. Nair

Department of Aerospace Engineering, Indian Institute of Space Science and Technology, Thiruvananthapuram, Kerala, ۶۹۵۵۴۷, India

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Adkins, R. (۱۹۷۵). A short diffuser with low pressure loss. ...
  • De Gregorio F, F. G. (۲۰۰۸). Flow control on a ...
  • Donelli, R., F. De Gregorio and P. Iannelli (۲۰۱۰). Flow ...
  • Donelli, R., P. Iannelli, S. Chernyshenko, A. Iollo and L. ...
  • Donelli, R. S., P. Iannelli, E. Iuliano and D. De ...
  • Iollo, A. and L. Zannetti (۲۰۰۱). Trapped vortex optimal control ...
  • Kasper, W. A. (۱۹۷۵). Some ideas of vortex lift. Technical ...
  • Lasagna, D., R. Donelli, F. De Gregorio and G. Iuso ...
  • Olsman, W. and T. Colonius (۲۰۱۱). Numerical simulation of flow ...
  • Piegl, L. and W. Tiller (۱۹۹۶). The NURBS book. Springer ...
  • Ringleb, F. O. (۱۹۶۱). Separation control by trapped vortices. Boundary ...
  • Rockwell, D. and E. Naudascher (۱۹۷۹). Selfsustained oscillations of impinging ...
  • Rossiter, J. (۱۹۶۴). Wind-tunnel experiments on the flow over rectangular ...
  • Rowley, C., T. Colonius and A. Basu (۲۰۰۱). On self-sustained ...
  • Rowley, C., V. Juttijudata and D. Williams (۲۰۰۵). Cavity flow ...
  • Vuddagiri, A. and A. Samad (۲۰۱۳). Vortex trapping by different ...
  • نمایش کامل مراجع