انتخاب یک فضای ویژگی بهینه در تشخیص حملات صرعی بر پایه آنالیز کمی سازی بازگشتی و الگوریتم ژنتیک
Publish Year: 1395
Type: Journal paper
Language: Persian
View: 176
This Paper With 10 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
این Paper در بخشهای موضوعی زیر دسته بندی شده است:
Export:
Document National Code:
JR_JIPET-7-26_004
Index date: 9 January 2022
انتخاب یک فضای ویژگی بهینه در تشخیص حملات صرعی بر پایه آنالیز کمی سازی بازگشتی و الگوریتم ژنتیک abstract
در طبقه بندی داده ها انتخاب فضای ویژگی متناسب با ماهیت پدیده و قدرت تفکیک بالا بسیار حائز اهمیت است. قابلیت نگاشت بازگشتی در تحلیل دادگان غیرایستا موجب می شود در تشخیص حملات صرعی نیز مورد توجه قرار گیرد. در این پژوهش به تشخیص حملات صرعی توسط آنالیز کمی سازی بازگشتی بر پایه ترکیب الگوریتم ژنتیک و طبقه بند بیزین پرداخته شده است. در ابتدا نگاشت بازگشتی سیگنال EEG دو گروه صرعی و نرمال هریک شامل ۱۰۰ نمونه، بازای پنج نوع معیار فاصله (ماکزیمم فاصله، مینیمم فاصله، اقلیدوسی، ماهالانوبیس، منهتن) و ۱۰ حد آستانه(ε) مختلف تشکیل و بهترین مجموعه ویژگی بازای ۵۰ تکرار الگوریتم ژنتیک بر اساس نرخ طبقه بندی بیزین انتخاب گردید. نتایج، نشانگر کارایی بالای روش پیشنهادی بوده به گونه ای که با انتخاب معیار مینیمم فاصله و حدآستانه ۱˂ε˂ ۱/۰ تفکیک ۱۰۰ % است. همچنین روش نسبت به حد آستانه (ε) و معیار فاصله حساسیت پایینی دارد. ویژگی Trans با بیشترین مشارکت در انتخاب ویژگی و بالاترین صحت، به عنوان ویژگی بهینه معرفی می شود.
انتخاب یک فضای ویژگی بهینه در تشخیص حملات صرعی بر پایه آنالیز کمی سازی بازگشتی و الگوریتم ژنتیک Keywords:
انتخاب یک فضای ویژگی بهینه در تشخیص حملات صرعی بر پایه آنالیز کمی سازی بازگشتی و الگوریتم ژنتیک authors
صالح لشکری
دانشجوی دکترا - دانشکده مهندسی برق، واحد مشهد، دانشگاه آزاد اسلامی، مشهد، ایران
مهدی آذرنوش
استادیار - دانشکده مهندسی برق، واحد مشهد، دانشگاه آزاد اسلامی، مشهد، ایران
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :