Prediction of Pressure Drop for Oil–Water Flow in Horizontal Pipes using an Artificial Neural Network System
Publish place: Journal of Applied Fluid Mechanics، Vol: 9، Issue: 5
Publish Year: 1395
Type: Journal paper
Language: English
View: 183
This Paper With 6 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
این Paper در بخشهای موضوعی زیر دسته بندی شده است:
Export:
Document National Code:
JR_JAFM-9-5_036
Index date: 23 January 2022
Prediction of Pressure Drop for Oil–Water Flow in Horizontal Pipes using an Artificial Neural Network System abstract
In this study, pressure drop for oil–water flow in horizontal pipes is represented by using artificial neural network (ANN). Results were compared with Al-Wahaibi correlation and Two-fluid model. This research has used a multilayer feed forward network with Levenberg Marquardt back propagation training for prediction of pressure drop. Original data were divided into two parts where 80% of data was used as training data and remaining 20% of data was used for testing. In this method inputs are oil superficial velocity, water superficial velocity, ratio of density, ratio of viscosity, diameter of pipe and roughness of the pipe wall. The number of neurons is set on four. The feasibility of ANN, Al-Wahaibi correlation and Two-fluid model has been tested against 11 pressure drop data sources. The average absolute percent error of Al-Wahaibi correlation and two-fluid model are 12.73 and 15.84 while this average for the same systems using neural network is only 6.36.so the ANN is in good agreement with experimental data.
Prediction of Pressure Drop for Oil–Water Flow in Horizontal Pipes using an Artificial Neural Network System Keywords:
Prediction of Pressure Drop for Oil–Water Flow in Horizontal Pipes using an Artificial Neural Network System authors
A. A. Amooey
Department of Chemical Engineering, University of Mazandaran, Babolsar, Iran