سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

A New Similarity Method to Optimize Business in the Online Stores Using the Rating Time Technology

Publish Year: 1396
Type: Journal paper
Language: English
View: 190

This Paper With 23 Page And PDF Format Ready To Download

Export:

Link to this Paper:

Document National Code:

JR_JITM-9-1_004

Index date: 15 February 2022

A New Similarity Method to Optimize Business in the Online Stores Using the Rating Time Technology abstract

These days, Emergence of e-commerce web sites is one of the important consequences of the Internet in modern times, but products data is growing exponentially. In such environment, customers face a problem in finding optimized information among huge data bases about the items or desired products. In order to assist buyers, large e-commerce companies are planning to introduce their own recommender systems to help their customers in making a better choice among the items. Due to high percentage error , a basic method to build such systems is not usually being applied. In this essay, two methods have been suggested in order to improve recommendations in recommender systems. Collaborative filtering method is one of the most successful methods used in the system, but using this method that it has common problem the increasing number of users and products, therefore system do not inability to request the requirement of cold start and data sparsity. Two methods have been suggested in order to improve recommendations in recommender systems. To resolve this problem, a new method has been introduced in which by integrating  rating time by Pearson also combining semantic technology with social networks offers a solution to reduce issues such as "cold start" and generally "data sparsity" in recommender systems. The result of simulating showed that the proposed approach provided better performance and more accurate predictions in addition of more consistent with user preferences.

A New Similarity Method to Optimize Business in the Online Stores Using the Rating Time Technology Keywords:

A New Similarity Method to Optimize Business in the Online Stores Using the Rating Time Technology authors

نیره زاغری

Ph.D. Candidate in Computer Engineering, Azad University, Tehran, Iran

اردشیر زمانی

Ph.D. Candidate in Business Management, Tehran University, Tehran, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
حسنقلی‎پور، ط.؛ امیری، م.؛ فهیم، ف.؛ قادری عابد، ا.ح. (۱۳۹۲). ...
کرامتی، ع.؛ خالقی، ر. (۱۳۹۳). توسعه یک سیستم پیشنهاددهنده محصول ...
کریمی علویجه، م. ح.؛ عسگری، ش.؛ پرسته، س. (۱۳۹۴). فروشگاه ...
کی‎پور، ا.؛ براری، م. و شیرازی، ح. (۱۳۹۳). ارائه روشی ...
Candillier, L., Meyer, F. & Fessant, F. (۲۰۰۸). Designing Specific ...
Gopal, R.D., Tripathi, A.K., Walter, Z.D. (۲۰۰۶). Economics of first-contact ...
Hasan Gholipour, T., Amiri, M., Fahim, F. & Ghaderi abed, ...
(in Persian)Hill, W., Stead, L., Rosenstein, M. & Furnas, G. ...
Karimi, M., Askari, SH. & Paraste, S. (۲۰۱۵). Intelligent Internet ...
(in Persian)Keramati, A. & Khaleghi, R. (۲۰۱۳). Developing a design ...
O'Donovan, J. & Smyth, B. (۲۰۰۵). Trust in recommender systems. ...
Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P. & Riedl, ...
Sarwar, B., Karypis, G. Konstan, J. & Riedl, J. (۲۰۰۱). ...
Shambour, Q. & Lu, J. (۲۰۱۲). A trust-semantic fusion-based recommendation ...
Shardanand, U. & Maes, P. (۱۹۹۵). Social information filtering: algorithms ...
Shinde, S.K. & Kulkarni, U. (۲۰۱۲). Hybrid personalized recommender system ...
Zamani, A., Rahmati, M. H. (۲۰۱۴). Identifying and Rating Affecting ...
نمایش کامل مراجع