Usage the lazy learning meta-heuristic technique for predicting entrepreneurial marketing in the insurance industry
Publish Year: 1400
نوع سند: مقاله ژورنالی
زبان: English
View: 170
This Paper With 13 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_APRIE-8-0_008
تاریخ نمایه سازی: 17 اسفند 1400
Abstract:
Due to the increasing importance of marketing, entrepreneurship and the role of organizational structure in their application, the purpose of this research is to predict entrepreneurial marketing using an organizational structure in the insurance industry. For this purpose, for marketing, seven indicators and for organizational structure, three indicators are defined, then prediction of entrepreneurial marketing indicators has been done by organizational structure indicators using lazy learning algorithm. In the proposed method, after predicting each data by K vector from its closest neighbor, the algorithm database is enriched for better prediction of future data. The proposed algorithm is simulated and compared in five different modes by MATLAB software, also, three insurance (Iran, Karafarin and Parsiyan) companies are selected in Mazandaran province. In total, the statistical population in this study is ۵۸۸ cases. The results of simulation indicate the proper accuracy of entrepreneurial marketing forecasting based on validation parameters MSE and NRMSD. In this research, Lazy Learning method can predict future without modeling the problem with previous information processing.
Keywords:
Authors
Mohammad Javad Taghipourian
Department of Management, Chalous Branch, Islamic Azad University, Chalous, Iran.
Elham Fazeli Veisari
Department of Management, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran.
Syed Mahmod Norashrafodin
Foundation of the Oppressed of the Islamic Revolution of Iran, Tehran, Iran.
Mohammad Verij Kazemi
West Mazandaran Electric Power Distribution Company, Nowshahr, Iran.
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :