مقایسه مدل های رگرسیونی و شبکه های عصبی مصنوعی در پیش بینی عملکرد تولیدی مرغان تخم گذار
Publish place: Iranian Journal of Animal Science Research، Vol: 7، Issue: 1
Publish Year: 1394
Type: Journal paper
Language: Persian
View: 225
This Paper With 8 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
Export:
Document National Code:
JR_JASR-7-1_007
Index date: 15 March 2022
مقایسه مدل های رگرسیونی و شبکه های عصبی مصنوعی در پیش بینی عملکرد تولیدی مرغان تخم گذار abstract
این مطالعه به منظور بررسی پیش بینی شاخص های عملکرد تولیدی در مرغان تخم گذار با استفاده از شبکه های عصبی مصنوعی و رگرسیون غیرخطی چندگانه انجام شد. بررسی بر روی اطلاعات چهار دوره متوالی پرورش در یک واحد پرورش مرغ تخم گذار صورت گرفت. روش های داده-کاوی شامل رگرسیون خطی و غیر خطی، شبکه عصبی پرسپترون سه لایه، شبکه عصبی پرسپترون چهار لایه و شبکه عصبی با تابع پایه ای شعاعی بود. در این مدل ها از متغیرهای سن گله، میزان خوراک مصرفی و فصل تولید به عنوان متغیر پیشگو و شاخص های عملکرد تولیدی شامل درصد تخم-گذاری، وزن توده ای تخم مرغ تولیدی و ضریب تبدیل غذایی به عنوان متغیر پاسخ استفاده شد. نتایج نهایی رگرسیون های خطی نشان داد که برای تمامی متغیرهای وابسته مورد مطالعه متغیر مستقل سن گله معنی دار می باشد. بنابراین رگرسیون غیر خطی شاخص های عملکرد تولیدی در مقابل سن برای مقایسه با شبکه های عصبی مختلف مورد بررسی قرار گرفت و برای مقایسه کلیه مدل ها از ضریب تعیین (R۲) و میانگین قدر مطلق خطا (MAE) استفاده شد. نتایج نشان داد بین شبکه های عصبی مصنوعی مختلف مورد مطالعه، شبکه با تابع پایه ای شعاعی بهتر از سایر مدل های در پیش بینی شاخص های عملکرد تولیدی مرغان تخم گذار عمل می کند.
مقایسه مدل های رگرسیونی و شبکه های عصبی مصنوعی در پیش بینی عملکرد تولیدی مرغان تخم گذار Keywords:
مقایسه مدل های رگرسیونی و شبکه های عصبی مصنوعی در پیش بینی عملکرد تولیدی مرغان تخم گذار authors
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :