سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

DynamicEvoStream: An EvoStream based Algorithm for Dynamically Determining The Number of Clusters in Data Streams

Publish Year: 1401
Type: Journal paper
Language: Persian
View: 223

This Paper With 12 Page And PDF Format Ready To Download

Export:

Link to this Paper:

Document National Code:

JR_TJEE-51-3_002

Index date: 18 April 2022

DynamicEvoStream: An EvoStream based Algorithm for Dynamically Determining The Number of Clusters in Data Streams abstract

EvoStream is a stream clustering algorithm which gradually clusters data in the idle times of the stream. In comparison with other algorithms in this field, EvoStream has a lower computation overload in the offline phase and has better accuracy. Also, in this algorithm, the number of clusters is taken as constant whereas in an authentic stream this number varies with the complexity of input data. In this work, we present DynamicEvoStream as an improved version of the original EvoStream. In this algorithm, we detect and exploit variations in the distribution and speed of the stream.  Also, we modified the cleanup function to merge overlapping clusters. Therefore, in contrast to the basic EvoStream, DynamicEvoStream identifies the number of clusters in a dynamic manner. Also, the speed of evolutionary steps is increased while improving the quality of the clusters. Finally, experiments using DynamicEvoStream on different streams showed that it can cluster the stream up to four times faster than the original EvoStream with fewer computation and memory resources. In the worst case, the quality of clusters is competitive to the original EvoStream, however improves the quality of clusters up to ۳۰% in the majority of cases.

DynamicEvoStream: An EvoStream based Algorithm for Dynamically Determining The Number of Clusters in Data Streams Keywords:

DynamicEvoStream: An EvoStream based Algorithm for Dynamically Determining The Number of Clusters in Data Streams authors

زهرا عمیقی

Department of Computer Engineering, Faculty of Engineering, Bu-Ali Sina University, Hamedan, Iran

M. Yousef Sanati

Department of Computer Engineering, Faculty of Engineering, Bu-Ali Sina University, Hamedan, Iran

میرحسین دزفولیان

Department of Computer Engineering, Faculty of Engineering, Bu-Ali Sina University, Hamedan, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
Shayesteh, V. Hakami, S.A. Mostafavi, A. Akbari Azirani, “A Novel ...
Chen, S. Mao, Y. Liu, “Big Data: A Survey”, Mobile ...
Kolajo, O. Daramola, A. Adebiyi, “Big data stream analysis: a ...
Gurusamy, S. Kannan, K. Nandhini, "The Real Time Big Data ...
Namiot, “On Big Data Stream Processing”, International Journal of Open ...
Carnein, H. Trautmann, "EvoStream Evolutionary Stream Clustering Utilizing Idle Times", ...
K. Jain, M.N. Murty, P.J. Flynn, “Data clustering: a review”, ...
Ester, H.P. Kriegel, J. Sander, X. Xu, “A density-based algorithm ...
Behravan , S.H. Zahiri, S.M. Razavi, R. Trasarti, “Using Gray ...
Leite DF, Costa P, Gomide F (۲۰۰۹) Evolving granular classification ...
Dang, V. Lee, W. Ng, A. Ciptadi, K. Ong, “An ...
Guha, N. Mishra, R. Motwani, L. O’Callaghan, “Clustering data streams”, ...
Cao, M. Ester, W. Qian, and A. Zhou, “Density-based clustering ...
Zhou, F. Cao, Y. Yan, C. Sha, X. He, “Distributed ...
Tu, Y. Chen, “Stream data clustering based on grid density ...
H. Dang, V.C. Lee, W.K. Ng, K. Ong, “Incremental and ...
P. Barddal, H.M. Gomes, F. Enembreck, “SNCStream: A Social Network-Based ...
Khalilian, N. Mustapha, N. Sulaiman, “Data Stream Clustering by Divide ...
Hyde, P. Angelov, A. MacKenzie, “Fully Online Clustering of Evolving ...
Gu, P. Angelov, D. Kangin, J. Principe, “Self-Organised Direction Aware ...
Su, Y. Li, X. Zhao, “Data Stream Clustering by fast ...
Ahmed, G. Dalkılıç, Y. Erten, “DGStream: High quality and efficiency ...
Longnguyen, Y. Kwongwoon,W. Keongng, "A Survey On Data Stream Clustering ...
Mansalis, E. Ntoutsi, N. Pelekis, Y. Theodoridis, "An Evaluation of ...
Carnein, H. Trautmann, "Optimizing Data Stream Representation: An Extensive Survey ...
Mohiuddin, "Data Summarization: A Survey", Knowledge and Information Systems, vol. ...
Whitley, Darrell. "A genetic algorithm tutorial", Statistics and Computing, vol.۴, ...
M. Spears, K.A. De Jong, T. Bäck, D.B. Fogel, H. ...
Maulik, S. Bandyopadhyay, “Genetic algorithm-based clustering technique”, Pattern Recognition, vol. ...
C. Aggarwal, J. Han, J. Wang, P.S. Yu, “A framework ...
López-Ibáñez, J. Dubois-Lacoste, L. Pérez Cáceres, T. Stützle, M. Birattari, ...
نمایش کامل مراجع