سیستم توصیه گر پالایش همکارانه جهت پیشنهاد بازی های رایانه ای

Publish Year: 1400
نوع سند: مقاله کنفرانسی
زبان: Persian
View: 276

This Paper With 10 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

این Paper در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

CGCO07_050

تاریخ نمایه سازی: 24 اردیبهشت 1401

Abstract:

سیستم های توصیه گر رو شهایی هستند که با هدف پیشنهاد موارد مرتبط با سلیقه کاربران مانند فیلم برای تماشا، متن برای خواندن، محصولات برای خرید و غیره انجام میشود. طی چند دهه گذشته، با ظهور شبکه های اجتماعی مانند یوتیوب، آمازون، نتفلیکس و بسیاری دیگر از خدمات وب، سیستم های توصیه گر بیشتر و بیشتر در زندگی روزمره جای گرفته است. از طرفی دیگر با پیشرفت روزافزون صنعت بازی های رایانه ای و افزایش محبوبیت آن در جهان و به ویژه در ایران، نیاز به یک سیستم توصیه گر برای تسهیل جست و جو و انتخاب بازی برای کاربران حس می شود. رویکرد پا لایش همکارانه به دلیل سادگی وفهم آسان یکی از محبوب ترین مدل های سیستم های توصیه گر است که توصیه ها صرفا بر اساس تعاملات قبلی ثبت شده بین کاربران و اقلام در قالب ماتریس امتیازدهی ارائه می شوند هدف این مقاله طراحی یک سیستم توصیه گر پالایش همکارانه است که بر اساس امتیازات کاربران به بازی های مختلف پیشنهاداتی مناسب با سلیقه آنها ارائه دهد. سیستم پیشنهادی رویکردی ترکیبی از مدل های پالایش همکارانه مبتنی بر کاربر و قلم و همچنین شبکه عصبی جهت توصیه K -بالاترین بازیبه کاربر فعال را ارائه مینماید. ارزیابی سیستم پیشنهادی بر روی مجموعه داده از پلتفرم steam اعمال شده و ارزیابی توسط عامل انسانی و همینطور توسط معیارهای ارزیابی متداول با یک روش توصیه گر تصادفی صورت گرفته است که نتایج بیانگر ارایه توصیه های متناسب با سلیقه کاربران بوده و همچنین عملکرد سیستم نسبت به روش توصیه گرتصادفی بهبود بخشیده شده است.

Keywords:

Authors

رضا آینه وند

دانشکده مهندسی کامپیوتر-دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران،

چیترا دادخواه

استادیار، دانشکده مهندسی کامپیوتر-دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران،