Prognosis of Time to Failure of Corroding Pipelines
Publish place: International Journal of Coastal, Offshore and Environmental Engineering، Vol: 1، Issue: 2
Publish Year: 1396
Type: Journal paper
Language: English
View: 203
This Paper With 10 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
Export:
Document National Code:
JR_IJCOE-1-2_002
Index date: 17 May 2022
Prognosis of Time to Failure of Corroding Pipelines abstract
The oil and gas pipelines are significant assets in Iran. However, these assets are subject to degradation from corrosion. Corrosion causes gradual thinning of the pipelines’ wall leading to leaks or bursts. Allowing a corroding pipeline to continue operation may lead to a finite risk of exceeding the limit state of burst. Codes of practice, such as Modified ASME B31G [1] and DNV F101 [3], among others, have developed relationships to determine the bursting pressure of corroded pipelines. The purpose of this paper is to develop, test, and illustrate a simple spreadsheet-based probabilistic procedure that can be used by practicing engineers to determine the Remaining Useful Life (RUL) of a corroding pipeline, following its first inspection. Modified ASME B31G and DNV F101 equations are used to illustrate this method. As new inspection data regarding the extent of corrosion becomes available, the results can be updated and a new probability of failure obtained. The calculated probability of failure is then compared with the target values to determine the remaining life. The approach is equally applicable to both onshore and offshore oil and gas pipelines.
Prognosis of Time to Failure of Corroding Pipelines Keywords:
Pipeline corrosion , Integrity management , Remaining useful life (RUL) , Modified B31G , Fitness-For-Service (FFS) , Reliability assessment , Time-dependent wall thinning.
Prognosis of Time to Failure of Corroding Pipelines authors
Sirous Yasseri
Brunel university
Hamid Bahai
Brunel university London
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :