NEW CRITERIA FOR RULE SELECTION IN FUZZY LEARNING CLASSIFIER SYSTEMS
Publish place: Iranian Journal of Fuzzy Systems، Vol: 3، Issue: 1
Publish Year: 1385
Type: Journal paper
Language: English
View: 122
This Paper With 13 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
Export:
Document National Code:
JR_IJFS-3-1_007
Index date: 13 June 2022
NEW CRITERIA FOR RULE SELECTION IN FUZZY LEARNING CLASSIFIER SYSTEMS abstract
Designing an effective criterion for selecting the best rule is a major problem in theprocess of implementing Fuzzy Learning Classifier (FLC) systems. Conventionally confidenceand support or combined measures of these are used as criteria for fuzzy rule evaluation. In thispaper new entities namely precision and recall from the field of Information Retrieval (IR)systems is adapted as alternative criteria for fuzzy rule evaluation. Several differentcombinations of precision and recall are redesigned to produce a metric measure. These newlyintroduced criteria are utilized as a rule selection mechanism in the method of Iterative RuleLearning (IRL) of FLC. In several experiments, three standard datasets are used to compare andcontrast the novel IR based criteria with other previously developed measures. Experimentalresults illustrate the effectiveness of the proposed techniques in terms of classificationperformance and computational efficiency.
NEW CRITERIA FOR RULE SELECTION IN FUZZY LEARNING CLASSIFIER SYSTEMS Keywords:
NEW CRITERIA FOR RULE SELECTION IN FUZZY LEARNING CLASSIFIER SYSTEMS authors
MEHDI EFTEKHARI
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, SHIRAZ UNIVERSITY, SHIRAZ, IRAN
MANSOUR ZOLGHADRI JAHROMI
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, SHIRAZ UNIVERSITY, SHIRAZ, IRAN
SERAJEDDIN KATEBI
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, SHIRAZ UNIVERSITY, SHIRAZ, IRAN
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :