سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

NEW CRITERIA FOR RULE SELECTION IN FUZZY LEARNING CLASSIFIER SYSTEMS

Publish Year: 1385
Type: Journal paper
Language: English
View: 122

This Paper With 13 Page And PDF Format Ready To Download

Export:

Link to this Paper:

Document National Code:

JR_IJFS-3-1_007

Index date: 13 June 2022

NEW CRITERIA FOR RULE SELECTION IN FUZZY LEARNING CLASSIFIER SYSTEMS abstract

Designing an effective criterion for selecting the best rule is a major problem in theprocess of implementing Fuzzy Learning Classifier (FLC) systems. Conventionally confidenceand support or combined measures of these are used as criteria for fuzzy rule evaluation. In thispaper new entities namely precision and recall from the field of Information Retrieval (IR)systems is adapted as alternative criteria for fuzzy rule evaluation. Several differentcombinations of precision and recall are redesigned to produce a metric measure. These newlyintroduced criteria are utilized as a rule selection mechanism in the method of Iterative RuleLearning (IRL) of FLC. In several experiments, three standard datasets are used to compare andcontrast the novel IR based criteria with other previously developed measures. Experimentalresults illustrate the effectiveness of the proposed techniques in terms of classificationperformance and computational efficiency.

NEW CRITERIA FOR RULE SELECTION IN FUZZY LEARNING CLASSIFIER SYSTEMS Keywords:

NEW CRITERIA FOR RULE SELECTION IN FUZZY LEARNING CLASSIFIER SYSTEMS authors

MEHDI EFTEKHARI

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, SHIRAZ UNIVERSITY, SHIRAZ, IRAN

MANSOUR ZOLGHADRI JAHROMI

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, SHIRAZ UNIVERSITY, SHIRAZ, IRAN

SERAJEDDIN KATEBI

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, SHIRAZ UNIVERSITY, SHIRAZ, IRAN

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
R. Agrawal, H. Mannila, R. Srikant, H. Toivonen and A. ...
R. Agrawal, and R. Srikant, Fast algorithms for mining association ...
Richardo Baeza-Yates and Berthier Ribeiro-Neto, Modern information retrieval, New York, ...
L. B. Booker, D. E. Goldberg and J. H. Holland, ...
L. Castillo, A. Gonzanlez and R. Perez, Including a simplicity ...
L. Castro, J. J. Castro-Schez and J. M. Zurita, Use ...
S. M. Chen and C. H. Yu, A new method ...
O. Cordon, F. Herrera, F. Hoffman and L. Magdalena, Genetic ...
P. A. Devijver and J. Kittler, Pattern Recognition: A statistical ...
U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, ...
A. Gonzalez and R. Perez, Completeness and consistency conditions for ...
A. Gonzanlez and R. Perez, SLAVE: A genetic learning system ...
F. Herrera, M. Lozano and J. L. Verdegay, Generating rules ...
Fuzzy Logic and Soft Computing, Word Scientific, (۱۹۹۵), ۱۱-۲۰ ...
J. H. Holland and Escaping Britleness: The possibilities of general ...
H. Ishibuchi and T. Yamaoto, Comparison of heuristic criteria for ...
H. Ishibuchi, T. Yamamoto and T. Nakashima, Fuzzy data mining: ...
C. Z. Janikow, A knowledge intensive genetic algorithm for supervised ...
D. E. Kraft and A. Bookstein, Evaluation of information retrieval ...
D. J. Newman and S. Hettich, C.L. Blake and C.J. ...
J. A. Roubos and M. Setnes, Compact fuzzy models through ...
J. A. Roubos, M. Setnes and J. Abonyi, Learning fuzzy ...
M. Setnes, R. Babuska, U. Kaymak and H. R. van ...
S. F. Smith, A learning system based on genetic adaptive ...
C. J. Van Rijsbergen, Information Retrieval, Butterworths, ۱۹۷۹ ...
G. Venturini, SIA: A Supervised Inductive Algorithm with Genetic Search ...
L. X. Wang and J. M. Mendel, Generating fuzzy rules ...
نمایش کامل مراجع