سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

Increasing Performance of Recommender Systems by Combining Deep Learning and Extreme Learning Machine

Publish Year: 1401
Type: Journal paper
Language: English
View: 268

This Paper With 12 Page And PDF Format Ready To Download

این Paper در بخشهای موضوعی زیر دسته بندی شده است:

Export:

Link to this Paper:

Document National Code:

JR_JADM-10-2_004

Index date: 17 June 2022

Increasing Performance of Recommender Systems by Combining Deep Learning and Extreme Learning Machine abstract

Nowadays, with the expansion of the internet and its associated technologies, recommender systems have become increasingly common. In this work, the main purpose is to apply new deep learning-based clustering methods to overcome the data sparsity problem and increment the efficiency of recommender systems based on precision, accuracy, F-measure, and recall. Within the suggested model of this research, the hidden biases and input weights values of the extreme learning machine algorithm are produced by the Restricted Boltzmann Machine and then clustering is performed. Also, this study employs the ELM for two approaches, clustering of training data and determine the clusters of test data. The results of the proposed method evaluated in two prediction methods by employing average and Pearson Correlation Coefficient in the MovieLens dataset. Considering the outcomes, it can be clearly said that the suggested method can overcome the problem of data sparsity and achieve higher performance in recommender systems. The results of evaluation of the proposed approach indicate a higher rate of all evaluation metrics while using the average method results in rates of precision, accuracy, recall, and F-Measure come to 80.49, 83.20, 67.84 and 73.62 respectively.

Increasing Performance of Recommender Systems by Combining Deep Learning and Extreme Learning Machine Keywords:

Increasing Performance of Recommender Systems by Combining Deep Learning and Extreme Learning Machine authors

Z. Nazari

Computer Engineering Department, Shomal University, Amol, Iran.

H.R. Koohi

Computer Engineering Department, Shomal University, Amol, Iran

J. Mousavi

Computer Engineering Department, Shomal University, Amol, Iran.

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
A. Vespignani, “Predicting the behavior of techno-social systems,” Science, Vol. ...
D. K. Behera, M. Das, and S. Swetanisha, “Predicting users’ ...
D. K. Behera, M. Das, S. Swetanisha, and B. Naik, ...
A. Salah, N. Rogovschi, and M. Nadif, “A dynamic collaborative ...
L. Lü, M. Medo, C. H. Yeung, Y. C. Zhang, ...
M. Salehi, I. Nakhai Kamalabadi and M. B. Ghaznavi Ghoushchi, ...
E. Q. Da Silva, C. G. Camilo-Junior, L. M. L. ...
D. Jannach, M. Zanker, A. Felfernig, and G. Friedrich, Recommender ...
S. Wei, X. Zheng, D. Chen, and C. Chen, “A ...
D. Almazro, G. Shahatah, L. Albdulkarim, M. Kherees, R. Martinez, ...
B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Item-based ...
H. Koohi and K. Kiani, “User based Collaborative Filtering using ...
R. Salakhutdinov, A. Mnih, and G. Hinton, “Restricted Boltzmann machines ...
D. Goldberg, D. Nichols, B. M. Oki, and D. Terry, ...
K. Ericson and S. Pallickara, “On the performance of high ...
J. Bobadilla, F. Ortega, A. Hernando, and A. Gutiérrez, “Recommender ...
C. F. Tsai and C. Hung, “Cluster ensembles in collaborative ...
A. Jameson and B. Smyth, “Recommendation to groups,” in Lecture ...
H. Koohi and K. Kiani, “A new method to find ...
R. Katarya, “Movie recommender system with metaheuristic artificial bee,” Neural ...
S. P. Singh and S. Solanki, “A Movie Recommender System ...
S. Verma, P. Patel, and A. Majumdar, “Collaborative Filtering with ...
Q. He, X. Jin, C. Du, F. Zhuang, and Z. ...
G. E. Hinton, “A Practical Guide to Training Restricted Boltzmann ...
J. Kleinberg and M. Sandler, “Convergent algorithms for collaborative filtering,” ...
G. Adomavicius and A. Tuzhilin, “Toward the next generation of ...
Z. D. Zhao and M. S. Shang, “User-based collaborative-filtering recommendation ...
M. Ramezani, P. Moradi, and F. Akhlaghian, “A pattern mining ...
A. G. C. Pacheco, R. A. Krohling, and C. A. ...
F. Han, H. F. Yao, and Q. H. Ling, “An ...
G. Bin Huang, D. H. Wang, and Y. Lan, “Extreme ...
F. M. Harper and J. A. Konstan, “The movielens datasets: ...
H. Koohi and K. Kiani, “Two new collaborative filtering approaches ...
R. Barzegar Nozari and H. Koohi, “A novel group recommender ...
H. Ben Yedder, U. Zakia, A. Ahmed, and L. Trajković, ...
B. Alhijawi, G. Al-Naymat, N. Obeid, and A. Awajan, “Novel ...
M. Gupta, A. Thakkar, Aashish, V. Gupta, and D. P. ...
R. Barathy and P. Chitra, “Applying Matrix Factorization in Collaborative ...
M. R. I. Sarker and A. Matin, “A Hybrid Collaborative ...
J. Han, M. Kamber, and J. Pei, Data Mining: Concepts ...
نمایش کامل مراجع