سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

Developing New Models for Flyrock Distance Assessment in Open-Pit Mines

Publish Year: 1401
Type: Journal paper
Language: English
View: 211

This Paper With 15 Page And PDF Format Ready To Download

این Paper در بخشهای موضوعی زیر دسته بندی شده است:

Export:

Link to this Paper:

Document National Code:

JR_JMAE-13-2_004

Index date: 20 July 2022

Developing New Models for Flyrock Distance Assessment in Open-Pit Mines abstract

In this research work, a comprehensive study is conducted to predict flyrock as a typical and undesirable phenomenon occurring during the blasting operation in open-pit mining. Despite the availability of several empirical methods for predicting the flyrock distance, the complexity of flyrock analysis has resulted in the low performance of these models. Therefore, the statistical and robust artificial intelligence techniques are applied for flyrock prediction in the Sungun copper mine in Iran. For this purpose, the linear multivariate regression (LMR), imperialist competitive algorithm (ICA), adaptive neuro-fuzzy inference system (ANFIS), and artificial neural network (ANN) methods are applied to predict flyrock with effective parameters including the blasthole diameter, stemming, burden, powder factor, and maximum charge per delay. According to the attained results, the ANN model with the structure of 5-8-1, Levenberg-Marquardt as the learning algorithm, and log-sigmoid (logsig) as the transfer functions are selected as the optimal network with the RMSE and R2 values of 5.04 m and 95.6% to predict flyrock, respectively. Also it can be concluded that the ICA technique has a relatively high capability in predicting flyrock, with the LMR and ANFIS models placed in the next. Finally, the sensitivity analysis reveal that the powder factor and blasthole diameters have the most importance on the flyrock distance in the present work.

Developing New Models for Flyrock Distance Assessment in Open-Pit Mines Keywords:

Developing New Models for Flyrock Distance Assessment in Open-Pit Mines authors

J. Shakeri

Department of Mining Engineering, Faculty of Engineering, University of Kurdistan, Sanandaj, Iran

H. Amini Khoshalan

Department of Mining Engineering, Faculty of Engineering, University of Kurdistan, Sanandaj, Iran

H. Dehghani

Department of Mining Engineering, Hamedan University of Technology, Hamedan, Iran

M. Bascompta

Department of Mining Engineering, Polytechnic University of Catalonia, Barcelona, Spain

K. Onyelowe

Department of Civil Engineering, Michael Okpara University of Agriculture, Umudike, Nigeria

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
Bui, X.N., Nguyen, H., Le, H. A., Bui, H.B. and ...
Lundborg, N. (۱۹۷۴). The hazards of flyrock in rock blasting. ...
Monjezi, M., Mehrdanesh, A., Malek, A. and Khandelwal, M. (۲۰۱۳). ...
Nguyen, H. and Bui, X.N. (۲۰۱۹). Predicting blast-induced air overpressure: ...
Shakeri, J., Shokri, B. J. and Dehghani, H. (۲۰۲۰). Prediction ...
Nguyen, H., Bui, X.N., Bui, H.B. and Mai, N.L. (۲۰۲۰). ...
Khandelwal, M. and Monjezi, M. (۲۰۱۳). Prediction of backbreak in ...
Koopialipoor, M., Fallah, A., Armaghani, D.J., Azizi, A. and Mohamad, ...
Bajpayee, T.S., Rehak, T.R., Mowrey, G.L. and Ingram, D.K. (۲۰۰۴). ...
Lundborg, N., Persson, A., Ladegaard-Pedersen, A. and Holmberg, R. (۱۹۷۵). ...
Dehghani, H. and Shafaghi, M. (۲۰۱۷). Prediction of blast-induced flyrock ...
Rad, H. N., Bakhshayeshi, I., Jusoh, W. A. W., Tahir, ...
Han, H., Armaghani, D.J., Tarinejad, R., Zhou, J. and Tahir, ...
Nguyen, H., Bui, X.N., Choi, Y., Lee, C.W. and Armaghani, ...
Zhou, J., Aghili, N., Ghaleini, E.N., Bui, D.T., Tahir, M.M. ...
Monjezi, M., Dehghani, H., Shakeri, J. and Mehrdanesh, A. (۲۰۲۱). ...
Amini Khoshalan, H., Shakeri, J., Najmoddini, I. and Asadizadeh, M. ...
Onyelowe, K. C., Shakeri, J., Amini Khoshalan, H., Usungedo, T.F. ...
Onyelowe, K.C. and Shakeri, J. (۲۰۲۱). Intelligent prediction of coefficients ...
Onyelowe, K.C., Shakeri, J., Amini Khoshalann, H., Salahudeen, A.B., Arinze, ...
Atashpaz-Gargari, E. and Lucas, C. (۲۰۰۷). Imperialist competitive algorithm: an ...
Ahmadi, M. A. (۲۰۱۱). Prediction of asphaltene precipitation using artificial ...
Yazdipour, A. and Ghaderi, M.R. (۲۰۱۴). Optimization of weld bead ...
Alzoubi, I., Delavar, M., Mirzaei, F. and Arrabi, B.N. (۲۰۱۷). ...
Shokri, B. J., Dehghani, H. and Shamsi, R. (۲۰۲۰). Predicting ...
Rajabioun, R., Atashpaz-Gargari, E. and Lucas, C. (۲۰۰۸). Colonial competitive ...
Hasanipanah, M., Amnieh, H.B., Khamesi, H., Armaghani, D.J., Golzar, S.B. ...
Shakeri, J., Asadizadeh, M. and Babanouri, N. (۲۰۲۲). The prediction ...
Monjezi, M., Khoshalan, H.A. and Varjani, A.Y. (۲۰۱۲). Prediction of ...
Jang, J.S. (۱۹۹۳). ANFIS: adaptive-network-based fuzzy inference system. IEEE Transaction on Systems, Man ...
Zounemat-Kermani, M. and Teshnehlab,M. (۲۰۰۸). Using adaptive neuro-fuzzy inference system ...
Akyildiz, O. and Hudaverdi, T. (۲۰۲۰). ANFIS modelling for blast ...
Yang, Y. and Zhang, Q. (۱۹۹۷). A hierarchical analysis for ...
نمایش کامل مراجع