بررسی ارتباط بین خشکسالی و کاهش کیفیت آب با استفاده از سنجش از دور و روش شبکه های عصبی
Publish place: Remote Sensing and Iran GIS، Vol: 14، Issue: 2
Publish Year: 1401
Type: Journal paper
Language: Persian
View: 297
This Paper With 16 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
این Paper در بخشهای موضوعی زیر دسته بندی شده است:
Export:
Document National Code:
JR_GIS-14-2_006
Index date: 22 July 2022
بررسی ارتباط بین خشکسالی و کاهش کیفیت آب با استفاده از سنجش از دور و روش شبکه های عصبی abstract
با توجه به تاثیر خشکسالی در کیفیت و کمیت آب، هدف از این مطالعه بررسی خشکسالی با استفاده از شاخص های خشکسالی و ارتباط آن با میزان کیفیت آب در مناطق شمالی استان فارس ایران است. برای این منظور، شاخص های خشکسالی PCI، TVDI، NDVI در سال های ۲۰۰۰ تا ۲۰۲۰ استفاده شد. در ادامه، نقشه های پهنه بندی عناصر آب (Ca، Cl، EC، K، Na، Mg) با استفاده از روش کریجینگ تولید شد. سپس با به کارگیری روش شبکه های عصبی (MLP)، میزان عناصر آب با استفاده از شاخص های خشکسالی پیش بینی شد. نتایج نشان داد که با توجه به مقادیر شاخص های خشکسالی، روند تغییرات خشکسالی در منطقه از سال ۲۰۰۰ تا ۲۰۲۰ افزایشی بوده و بخش های جنوبی منطقه در وضعیت حادتری به نسبت دیگر بخش ها قرار دارد. نتایج حاصل از نقشه های پهنه بندی عناصر آب هم نشان داد که در بخش های جنوبی، غلظت املاح بیشتر از بخش های شمالی است. طبق نتایج حاصل از همبستگی بین شاخص های خشکسالی و مقادیر عناصر آب، Ca همبستگی بالایی (۸۲۰/۰ R=) با شاخص TVDI دارد و عناصر Cl، EC، K، Na، Mg نیز دارای همبستگی معنی داری (۸۰/۰ R>) با شاخص PCI است. نتایج حاصل از روش MLP، برای پیش بینی وضعیت کیفیت آب با استفاده از شاخص های خشکسالی، نشان داد که در مناطق جنوبی میزان املاح بیشتر و در نتیجه، کیفیت آب کمتر است. میزان دقت مدل در پیش بینی عناصر Cl، EC، K، Na، Mg، TH،TDS با استفاده از شاخص PCI برابر با ۸۵/۰ R۲= و درمورد عنصر Ca، با استفاده از شاخص TVDI برابر با ۷۱/۰ R۲= است.
بررسی ارتباط بین خشکسالی و کاهش کیفیت آب با استفاده از سنجش از دور و روش شبکه های عصبی Keywords:
بررسی ارتباط بین خشکسالی و کاهش کیفیت آب با استفاده از سنجش از دور و روش شبکه های عصبی authors
مهران شایگان
استادیار، گروه سنجش از دور و GIS، دانشگاه تربیت مدرس
مرضیه مکرم
دانشیار بخش جغرافیا، دانشکده اقتصاد، مدیریت و علوم اجتماعی، دانشگاه شیراز
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :