سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

AgriNet: a New Classifying Convolutional Neural Network for Detecting Agricultural Products’ Diseases

Publish Year: 1401
Type: Journal paper
Language: English
View: 204

This Paper With 19 Page And PDF Format Ready To Download

این Paper در بخشهای موضوعی زیر دسته بندی شده است:

Export:

Link to this Paper:

Document National Code:

JR_JADM-10-2_011

Index date: 1 October 2022

AgriNet: a New Classifying Convolutional Neural Network for Detecting Agricultural Products’ Diseases abstract

An important sector that has a significant impact on the economies of countries is the agricultural sector. Researchers are trying to improve this sector by using the latest technologies. One of the problems facing farmers in the agricultural activities is plant diseases. If a plant problem is diagnosed soon, the farmer can treat the disease more effectively. This study introduces a new deep artificial neural network called AgriNet which is suitable for recognizing some types of agricultural diseases in a plant using images from the plant leaves. The proposed network makes use of the channel shuffling technique of ShuffleNet and the channel dependencies modeling technique of SENet. One of the factors influencing the effectiveness of the proposed network architecture is how to increase the flow of information in the channels after explicitly modelling interdependencies between channels. This is in fact, an important novelty of this research work. The dataset used in this study is PlantVillage, which contains 14 types of plants in 24 groups of healthy and diseased. Our experimental results show that the proposed method outperforms the other methods in this area. AgriNet leads to accuracy and loss of 98% and 7%, respectively on the experimental data. This method increases the recognition accuracy by about 2% and reduces the loss by 8% compared to the ShuffleNetV2 method.

AgriNet: a New Classifying Convolutional Neural Network for Detecting Agricultural Products’ Diseases Keywords:

AgriNet: a New Classifying Convolutional Neural Network for Detecting Agricultural Products’ Diseases authors

F. Salimian Najafabadi

Azadi Campus, Yazd University, Yazd, Iran.

M. T. Sadeghi

Department of Electrical Engineering, Yazd University, Yazd, Iran.

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
K. Kiani, R. Hematpour, and R. Rastgoo, “Automatic Grayscale Image ...
N. Sharma, V. Jain, and A. Mishra, “An Analysis Of ...
J. Jung, M. Maeda, A. Chang, M. Bhandari, A. Ashapure, ...
B. Liu, Y. Zhang, D. He, and Y. Li, “Identification ...
A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification ...
C. Szegedy, L. Wei, J. Yangqing, P. Sermanet, S. Reed, ...
Q. Yan, B. Yang, W. Wang, B. Wang, P. Chen, ...
Y. Zhong, and M. Zhao, “Research on deep learning in ...
W.-z. Liang, K. R. Kirk, and J. K. Greene, “Estimation ...
A. Karlekar, and A. Seal, “SoyNet: Soybean leaf diseases classification,” ...
S. Kaur, S. Pandey, and S. Goel, “Semi-automatic leaf disease ...
J. Xiong, D. Yu, Q. Wang, L. Shu, J. Cen, ...
Anjna, M. Sood, and P. K. Singh, “Hybrid System for ...
M. Turkoglu, and D. Hanbay, “Leaf-based plant species recognition based ...
R. I. Hasan, S. M. Yusuf, and L. Alzubaidi, “Review ...
Y. S. Aurelio, G. M. de Almeida, C. L. de ...
X. Zhang, X. Zhou, M. Lin, and J. Sun, "ShuffleNet: ...
N. Ma, X. Zhang, H.-T. Zheng, and J. Sun, “ShuffleNet ...
J. Hu, L. Shen, and G. Sun, "Squeeze-and-Excitation Networks." ۲۰۱۸, ...
K. Rangarajan Aravind, P. Maheswari, P. Raja, and C. Szczepański, ...
J. Gu, Z. Wang, J. Kuen, L. Ma, A. Shahroudy, ...
F. Chollet, "Xception: Deep Learning with Depthwise Separable Convolutions." ۲۰۱۷, ...
N. Yao, F. Ni, Z. Wang, J. Luo, W.-K. Sung, ...
L. Chen, H. Fei, Y. Xiao, J. He, and H. ...
N. D. Marom, L. Rokach, and A. Shmilovici, "Using the ...
E. M. Dogo, O. J. Afolabi, N. I. Nwulu, B. ...
M. Brahimi, M. Arsenovic, S. Laraba, S. Sladojevic, K. Boukhalfa, ...
M. Agarwal, S. K. Gupta, and K. K. Biswas, “Development ...
H. Durmus, E. O. Günes, and M. Kirci, “Disease detection ...
S. P. Mohanty, D. P. Hughes, and M. Salathé, “Using ...
L.-C. Chang, E. El-Araby, V. Q. Dang, and L. H. ...
نمایش کامل مراجع