سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

Classification of Skin Lesions By Tda Alongside Xception Neural Network

Publish Year: 1401
Type: Journal paper
Language: English
View: 171

This Paper With 13 Page And PDF Format Ready To Download

این Paper در بخشهای موضوعی زیر دسته بندی شده است:

Export:

Link to this Paper:

Document National Code:

JR_JADM-10-3_004

Index date: 1 October 2022

Classification of Skin Lesions By Tda Alongside Xception Neural Network abstract

In this paper, we use the topological data analysis (TDA) mapper algorithm alongside a deep convolutional neural network in order to classify some medical images.Deep learning models and convolutional neural networks can capture the Euclidean relation of a data point with its neighbor data points like the pixels of an image and they are particularly good at modeling data structures that live in the Euclidean space and not effective at modeling data structures that live in the non-Euclidean spaces. Topological data analysis-based methods have the ability to not only extract the Euclidean, but also topological features of data.For the first time in this paper, we apply a neural network as one of the filter steps of the Kepler mapper algorithm to classify skin cancer images. The major advantage of this method is that Kepler Mapper visualizes the classification result by a simplicial complex, where neural network increases the accuracy of classification. Furthermore, we apply TDA mapper and persistent homology algorithms to analyze the layers of Xception network in different training epochs. Also, we use persistent diagrams to visualize the results of the analysis of layers of the Xception network and then compare them by Wasserstein distances.

Classification of Skin Lesions By Tda Alongside Xception Neural Network Keywords:

Classification of Skin Lesions By Tda Alongside Xception Neural Network authors

N. Elyasi

Department of math and computer Sciences, Kharazmi University, Tehran, Iran.

M. Hosseini Moghadam

Department of Engineering, Kharazmi University, Tehran, Iran.

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
O. Reiter, V. Rotemberg, K. Kose, A. C. Halpern, “Artificial ...
M. E. Aktas, E. Akbas, A. E. Fatmaoui, “Persistence homology ...
V. Buhrmester, D. Münch, M. Arens, “Analysis of Explainers of ...
H. Edelsbrunner, “Persistent Homology in Image Processing,” Graph-Based Representations in ...
N. Elyasi, M. Hosseini Moghadam, “An Introduction to a New ...
S. Gholizadeh, , A. Seyeditabari, W. Zadrozny, “Topological Signature of ...
H. Lee, H. Kang, M. K. Chung, B. Kim, D. ...
J. L. Nielson, J. Paquette, A. W. Liu, C. F. ...
M. E. Sardiu, , J. M. Gilmore, B. Groppe, L. ...
P. Tschandl, C. Rosendahl, H. Kittler, “The HAM۱۰۰۰۰ dataset, a ...
https://medium.com/@zurister/depth-wise-convolution-and-depth-wise-separable-convolution-۳۷۳۴۶۵۶۵d۴ec ...
F. Chollet, “Xception: Deep learning with depthwise separable convolutions,” In ...
A. Zomorodian, G. Carlsson, “Computing Persistent Homology,” Discrete and Computational ...
P. Bubenik, P. A. Dłotko, “persistence landscapes toolbox for topological ...
G. Singh, F. Mémoli, G. Carlsson, “Topological methods for the ...
[۱۷]https://tmap.readthedocs.io/en/latest/how۲work.html ...
`KeplerMapper', http://doi.org/۱۰.۵۲۸۱/zenodo.۱۰۵۴۴۴۴, accessed Jan ۲۰۱۹ ...
A. Hekler, , J. S, Utikal, A. H. Enk, A. ...
Y.M. Chung, C.S. Hu, A. Lawson, C. Smyth, “Topological approaches ...
ISIC۲۰۱۸. Available online: https://challenge۲۰۱۸.isic-archive.com/ (accessed on ۱۹ August ۲۰۱۸) ...
M. Kurmanji and F. Ghaderi, “Hand Gesture Recognition from RGB-D ...
نمایش کامل مراجع