سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

A Novel Classification and Diagnosis of Multiple Sclerosis Method using Artificial Neural Networks and Improved Multi-Level Adaptive Conditional Random Fields

Publish Year: 1401
Type: Journal paper
Language: English
View: 206

This Paper With 13 Page And PDF Format Ready To Download

این Paper در بخشهای موضوعی زیر دسته بندی شده است:

Export:

Link to this Paper:

Document National Code:

JR_JADM-10-3_006

Index date: 1 October 2022

A Novel Classification and Diagnosis of Multiple Sclerosis Method using Artificial Neural Networks and Improved Multi-Level Adaptive Conditional Random Fields abstract

Due to the small size, low contrast, variable position, shape, and texture of multiple sclerosis lesions, one of the challenges of medical image processing is the automatic diagnosis and segmentation of multiple sclerosis lesions in Magnetic resonance images. Early diagnosis of these lesions in the first stages of the disease can effectively diagnose and evaluate treatment. Also, automated segmentation is a powerful tool to assist professionals in improving the accuracy of disease diagnosis. This study uses modified adaptive multi-level conditional random fields and the artificial neural network to segment and diagnose multiple sclerosis lesions. Instead of assuming model coefficients as constant, they are considered variables in multi-level statistical models. This study aimed to evaluate the probability of lesions based on the severity, texture, and adjacent areas. The proposed method is applied to 130 MR images of multiple sclerosis patients in two test stages and resulted in 98% precision. Also, the proposed method has reduced the error detection rate by correcting the lesion boundaries using the average intensity of neighborhoods, rotation invariant, and texture for very small voxels with a size of 3-5 voxels, and it has shown very few false-positive lesions. The proposed model resulted in a high sensitivity of 91% with a false positive average of 0.5.

A Novel Classification and Diagnosis of Multiple Sclerosis Method using Artificial Neural Networks and Improved Multi-Level Adaptive Conditional Random Fields Keywords:

Image segmentation , Automatic Detection , Multiple Sclerosis , Adaptive Multi-Level Conditional Random Fields (AMCRF) , Artificial Neural Network

A Novel Classification and Diagnosis of Multiple Sclerosis Method using Artificial Neural Networks and Improved Multi-Level Adaptive Conditional Random Fields authors

Seyedeh R. Mahmudi Nezhad Dezfouli

Department of Computer Engineering, Islamic Azad University, Dezful Branch, Dezful, Iran

Y. Kyani

Department of Computer Engineering, Islamic Azad University, Central Tehran Branch, Tehran, Iran

Seyed A. Mahmoudinejad Dezfouli

edical Physics and Biomedical Engineering Department, Tehran University of Medical Sciences, Tehran, Iran.

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
A. Alijamaat, A. NikravanShalmani, P. Bayat, "Multiple sclerosis lesion segmentation ...
A. Alijamaat, A. NikravanShalmani, P. Bayat, "Multiple sclerosis identification in ...
A. Alijamaat, A. NikravanShalmani, P. Bayat, "Diagnosis of Multiple Sclerosis ...
M. Cabezas, A. Oliver, E. Roura, J. Freixenet, JC, Vilanova, ...
C.A. Cocosco, V. Kollokian, R.K.-S. Kwan, and A.C. Evans: "BrainWeb: ...
A. Cerasa, E. Bilotta, A. Augimeri, A. Cherubini, P. Pantano, ...
A. Chaudhuri, "Multiple sclerosis is primarily a neurodegenerative disease." Journal ...
S. Datta, B. R. Sajja, R. He,R. K. Gupta, J. ...
K. B. Dev, P. S. Jogi, S. Niyas, S. Vinayagamani, ...
P. H. B. Diniz, , T. L. A. Valente, J. ...
D.L. Collins, A.P. Zijdenbos, V. Kollokian, J.G. Sled, N.J. Kabani, ...
P. G. Freire, and R. J. Ferrari, "Multiple sclerosis lesion ...
D. García-Lorenzo, S. Francis, S. Narayanan, D. L. Arnold, and ...
C. Gros, B. De Leener, A. Badji, J. Maranzano, D. ...
S. Jain, D. M. Sima, A. Ribbens, M. Cambron, A. ...
Z. Karimaghaloo, D. L. Arnold, and T. Arbel. "Adaptive multi-level ...
N. K. Kasabov, "NeuCube: A spiking neural network architecture for ...
P. A. Narayana, Coronado, I., S. J. Sujit, J. S. ...
R.K.-S. Kwan, A.C. Evans, and G.B. Pike, "MRI simulation-based evaluation ...
R.K.-S. Kwan, A.C. Evans, and G.B. Pike, "An Extensible MRI ...
M. Salem, S. Valverde, M. Cabezas, D. Pareto, A. Oliver, ...
N. P.-L Shiee, A. Bazin, D. S. Ozturk, P. Reich, ...
A. Shoeibi, , M. Khodatars, M. Jafari, P. Moridian, M. ...
R. Wang, C. Li, J. Wang, X. Wei, Y. Li, ...
Y. Wang, Y. Zhou, H. Wang, J. Cui, B. A. ...
نمایش کامل مراجع