سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

بازشناسی مقاوم به نویز و تنوعات گفتار ازطریق به اشتراک گذاشتن مولفه های مشترک

Publish Year: 1390
Type: Conference paper
Language: Persian
View: 931

This Paper With 6 Page And PDF Format Ready To Download

Export:

Link to this Paper:

Document National Code:

ICEE19_054

Index date: 4 August 2012

بازشناسی مقاوم به نویز و تنوعات گفتار ازطریق به اشتراک گذاشتن مولفه های مشترک abstract

یکی از روشهای بهبود عملکرد سامانه های بازشناسی دربرابر نویز و یا تنوعات ناخواسته استخراج اطلاعات مشترک بین داده های مختلف ورودی میب اشد درمورد شبکه هایی که ظرفیت پایینی دارند امکان ذخیره سازی الگوها به صورت مفاهیم جداگانه و بدون درنظر گرفتن اشتراکات آنها وجود ندارد لذا کیفیت بازشناسی افت پیدا می کند دراین مقاله ساختاری ارایه شده است که زیرفضای مشترک بین سیگنالهای گفتار را استخراج کرده و اطلاعات مشترک بین آنها بین داده های حاصل از گویندگان مختلف به اشتراک گذاشته شود ساختار چند تکلیفی شبکه این امکان را فراهم م یکند تااین زیرفضا به صورت یک جاذب پیوسته واحدشکل بگیرد که این جاذب نسبت به تنوعاتی مانند تغییرات گوینده درفضای ورودی پویا می باشد لذا داده های اغشته به نویز توسط یک نگاشت غیرخطی به یک مانیفولد پویا درابعاد پایین تر فیلتر می شوند

بازشناسی مقاوم به نویز و تنوعات گفتار ازطریق به اشتراک گذاشتن مولفه های مشترک Keywords:

استخراج مولفه های اساسی , بازشناسی گفتار مقاوم به نویز , به اشتراک گذاشتن مولفه های مشترک , جاذب های پیوسته پویا , یادگیری زیرفضا

بازشناسی مقاوم به نویز و تنوعات گفتار ازطریق به اشتراک گذاشتن مولفه های مشترک authors

پروین زارعی اسکی کند

دانشگاه صنعتی امیرکبیر

سیدعلی سیدصالحی

دانشگاه صنعتی امیرکبیر

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
ک.کریمی، ه کارگیری مشخصات گوینده در جهت بهبود کیفیت مدل ...
_ _ _ _ formed in recurrent neural networks, accepted ...
R.Hadsell, S.Chopra, Y.LeCun, Dimensionality Reduction by learning _ invariant mapping, ...
_ _ _ _ International Conference On Document Analysis and ...
Y.Bengio, Learning deep architectures for AI, Foundations and trends in ...
P.Vincent, H.Larochelle, Y.Bengio, P.A.Manzagol. Extracting and composing robust features with ...
M .Ranzato, Y.L.Boureau, Y. LeCun, Sparse feature learning for deep ...
R.Xu, D.Wunsch, Survey of Clustering Algorithms, IEE Trans. Neural Networks, ...
B.A. Olshausen, D.J.Field, Sparse coding with an overcomplete basis set:A ...
M. P. Gh aemmaghami, F.Razzazi, H.Sameti, S. Dabbaghchian, B.BabaAli, Noise ...
_ _ _ _ Vision Computing, 27, 2009, 1302-1312. ...
A.K.Jain, R.P.W.Duin, J.Mao, Statistical pattern recognition: A review, IEEE Trans., ...
I.B. Ciocoiu, Invariant pattern recognition using analog recurrent associative memories, ...
_ _ _ recognition, In Proceedings of the Computer Vision ...
نمایش کامل مراجع

مقاله فارسی "بازشناسی مقاوم به نویز و تنوعات گفتار ازطریق به اشتراک گذاشتن مولفه های مشترک" توسط پروین زارعی اسکی کند، دانشگاه صنعتی امیرکبیر؛ سیدعلی سیدصالحی، دانشگاه صنعتی امیرکبیر نوشته شده و در سال 1390 پس از تایید کمیته علمی نوزدهمین کنفرانس مهندسی برق ایران پذیرفته شده است. کلمات کلیدی استفاده شده در این مقاله استخراج مولفه های اساسی، بازشناسی گفتار مقاوم به نویز، به اشتراک گذاشتن مولفه های مشترک ، جاذب های پیوسته پویا، یادگیری زیرفضا هستند. این مقاله در تاریخ 14 مرداد 1391 توسط سیویلیکا نمایه سازی و منتشر شده است و تاکنون 931 بار صفحه این مقاله مشاهده شده است. در چکیده این مقاله اشاره شده است که یکی از روشهای بهبود عملکرد سامانه های بازشناسی دربرابر نویز و یا تنوعات ناخواسته استخراج اطلاعات مشترک بین داده های مختلف ورودی میب اشد درمورد شبکه هایی که ظرفیت پایینی دارند امکان ذخیره سازی الگوها به صورت مفاهیم جداگانه و بدون درنظر گرفتن اشتراکات آنها وجود ندارد لذا کیفیت بازشناسی افت پیدا می کند دراین مقاله ساختاری ارایه شده است ... . برای دانلود فایل کامل مقاله بازشناسی مقاوم به نویز و تنوعات گفتار ازطریق به اشتراک گذاشتن مولفه های مشترک با 6 صفحه به فرمت PDF، میتوانید از طریق بخش "دانلود فایل کامل" اقدام نمایید.