Modeling and Identification of Catalytic Reformer Unit using Locally Linear Model Trees
Publish place: 19th Iranian Conference on Electric Engineering
Publish Year: 1390
Type: Conference paper
Language: English
View: 1,270
This Paper With 6 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
Export:
Document National Code:
ICEE19_247
Index date: 4 August 2012
Modeling and Identification of Catalytic Reformer Unit using Locally Linear Model Trees abstract
This paper presents a Neuro-fuzzy based method using local linear model trees (LOLIMOT) train algorithm for nonlinear identification of a catalytic reformer unit in oil refinery plant. This unit include highly nonlinear behaviour and it is complicated to obtain an accurate physical model. There for, it is necessary to use such appropriate method providing suitable while preventing computational complexities. LOLIMOT algorithm as an incremental learning algorithm has been used several time as a well-known method for nonlinear system identification and estimation. For comparison, Multi Layer Perceptron (MLP) and Radial Bases Function (RBF) neural networks as well-known methods for nonlinear system identification and estimation are used to evaluate the performance of LOLIMOT. The results presented in this paper clearly demonstrate that the LOLIMOT is superior to other methods in identification of nonlinear system such as catalytic reformer unit (CRU
Modeling and Identification of Catalytic Reformer Unit using Locally Linear Model Trees Keywords:
Modeling and Identification of Catalytic Reformer Unit using Locally Linear Model Trees authors
Mohammad Mokhtare
Faculty of Eng., Mechatronics Dept., Science and Research Branch, Islamic Azad University
Mahdi Aliyari Shoorehdeli
Faculty of Electrical Engineering, Mechatronics Dept., K. N. Toosi University of Tech
Alireza Fatehi
Faculty of Electrical Engineering, Mechatronics Dept., K. N. Toosi University of Tech
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :