An Approach to Learn Categorical Distance Based on Attributes Correlation
Publish place: 19th Iranian Conference on Electric Engineering
Publish Year: 1390
Type: Conference paper
Language: English
View: 1,219
This Paper With 6 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
Export:
Document National Code:
ICEE19_556
Index date: 4 August 2012
An Approach to Learn Categorical Distance Based on Attributes Correlation abstract
Measuring similarity or distance plays a key role for data mining and knowledge discovery tasks. A lot of work has been performed on continuous attributes, but for nominal attributes the similarity computation is not relatively well- understood. In this paper, we propose a novel approach to learn a familyof dissimilarity measures for categorical data. Based on these measures distance between two different values of an attribute can be determined by using the certain number of attributes rather than all attributes at once. We evaluate our methods in unsupervised environment, Experiments with real data show that our dissimilarity estimation method improves the accuracy of K-Modes clustering algorithm
An Approach to Learn Categorical Distance Based on Attributes Correlation Keywords:
An Approach to Learn Categorical Distance Based on Attributes Correlation authors
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :