Estimation of the regression function by Legendre wavelets
Publish Year: 1401
Type: Journal paper
Language: English
View: 217
This Paper With 16 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
Export:
Document National Code:
JR_IJNAO-12-23_001
Index date: 8 November 2022
Estimation of the regression function by Legendre wavelets abstract
We estimate a function f with N independent observations by using Leg-endre wavelets operational matrices. The function f is approximated with the solution of a special minimization problem. We introduce an explicit expression for the penalty term by Legendre wavelets operational matrices. Also, we obtain a new upper bound on the approximation error of a differentiable function f using the partial sums of the Legendre wavelets. The validity and ability of these operational matrices are shown by several examples of real-world problems with some constraints. An accurate ap-proximation of the regression function is obtained by the Legendre wavelets estimator. Furthermore, the proposed estimation is compared with a non-parametric regression algorithm and the capability of this estimation is illustrated.
Estimation of the regression function by Legendre wavelets Keywords:
Estimation of the regression function by Legendre wavelets authors
Mehdi Hamzehnejad
Department of Mathematic, Graduate University of Advanced Technology, Kerman, Iran.
Mohammad Mehdi Hosseini
Department of Applied Mathematics and Mahani Mathematical Research Center, Shahid Bahonar University of Kerman, Kerman, Iran.
Abbas Salemi
Department of Applied Mathematics and Mahani Mathematical Research Center, Shahid Bahonar University of Kerman, Kerman, Iran.
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :