سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

A New Mechanism for Detecting Shilling Attacks in Recommender Systems Based on Social Network Analysis and Gaussian Rough Neural Network with Emotional Learning

Publish Year: 1402
Type: Journal paper
Language: English
View: 357

This Paper With 14 Page And PDF Format Ready To Download

این Paper در بخشهای موضوعی زیر دسته بندی شده است:

Export:

Link to this Paper:

Document National Code:

JR_IJE-36-2_012

Index date: 14 January 2023

A New Mechanism for Detecting Shilling Attacks in Recommender Systems Based on Social Network Analysis and Gaussian Rough Neural Network with Emotional Learning abstract

A recommender system is an integral part of any e-commerce site. Shilling attacks are among essential challenges in recommender systems, which use the creation of fake profiles in the system and biased rating of items, causing the accuracy to decrease and the correct performance of the recommender system in providing recommendations to users. The target of attackers is to change the rank of content or items corresponded to their interests. Shilling attacks are a threat to the credibility of recommender systems. Therefore, detecting shilling attacks it necessary to in recommender systems to maintain their fairness and validity. Appropriate algorithms and methods have been so far presented to detect shilling attacks. However, some of these methods either examine the rating matrix from a single point of view or use low-order interactions or high-order interactions. This study aimed to propose a mechanism using users' rating matrix, rating time, and social network analysis output of users' profiles by Gaussian-Rough neural network to simultaneously use low-order and high-order interactions to detect shilling attacks. Finally, several experiments were conducted with three models: mean attack, random attack, and bandwagon attack, and compared with PCA, Semi, BAY, and XGB methods using precision, recall, and F1-Measure. The results indicated that the proposed method is more effective than the comparison methods regarding attack detection and overall detection, which proves the effectiveness of the proposed method.

A New Mechanism for Detecting Shilling Attacks in Recommender Systems Based on Social Network Analysis and Gaussian Rough Neural Network with Emotional Learning Keywords:

A New Mechanism for Detecting Shilling Attacks in Recommender Systems Based on Social Network Analysis and Gaussian Rough Neural Network with Emotional Learning authors

R. Moradi

Department of Industrial Engineering, K. N. Toosi University of Technology, Tehran, Iran

H. Hamidi

Department of Industrial Engineering, K. N. Toosi University of Technology, Tehran, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
Bobadilla, J., Ortega, F., Hernando, A. and Gutiérrez, A., "Recommender ...
Resnick, P. and Varian, H.R., "Recommender systems", Communications of the ...
Adomavicius, G. and Tuzhilin, A., "Toward the next generation of ...
Aggarwal, C.C., "Recommender systems, Springer, Vol. ۱, (۲۰۱۶) ...
Moghaddam, F.B. and Elahi, M., Cold start solutions for recommendation ...
Bollen, D., Knijnenburg, B.P., Willemsen, M.C. and Graus, M., "Understanding ...
Ricci, F., Rokach, L. and Shapira, B., Introduction to recommender ...
Jannach, D., Zanker, M., Felfernig, A. and Friedrich, G., "Recommender ...
Rubens, N., Elahi, M., Sugiyama, M. and Kaplan, D., Active ...
Su, X. and Khoshgoftaar, T.M., "A survey of collaborative filtering ...
Alonso, S., Bobadilla, J., Ortega, F. and Moya, R., "Robust ...
Kaminskas, M. and Bridge, D., "Diversity, serendipity, novelty, and coverage: ...
Jia, C.-X. and Liu, R.-R., "Improve the algorithmic performance of ...
Si, M. and Li, Q., "Shilling attacks against collaborative recommender ...
Mobasher, B., Burke, R., Bhaumik, R. and Williams, C., "Toward ...
Burke, R., O’Mahony, M.P. and Hurley, N.J., Robust collaborative recommendation, ...
Williams, C.A., "Thesis: Profile injection attack detection for securing collaborative ...
O'Mahony, M.P., Hurley, N.J. and Silvestre, G.C., "Recommender systems: Attack ...
Bhaumik, R., Williams, C., Mobasher, B. and Burke, R., "Securing ...
Mobasher, B., Burke, R., Bhaumik, R. and Sandvig, J.J., "Attacks ...
Yang, Z., Cai, Z. and Guan, X., "Estimating user behavior ...
Chung, C.-Y., Hsu, P.-Y. and Huang, S.-H., "Βp: A novel ...
Rezaimehr, F. and Dadkhah, C., "A survey of attack detection ...
Chirita, P.-A., Nejdl, W. and Zamfir, C., "Preventing shilling attacks ...
Lam, S.K. and Riedl, J., "Shilling recommender systems for fun ...
O'Mahony, M.P., Hurley, N.J. and Silvestre, G.C., "Detecting noise in ...
Mobasher, B., Burke, R., Bhaumik, R. and Williams, C., "Effective ...
Burke, R., Mobasher, B. and Bhaumik, R., "Limited knowledge shilling ...
Williams, C., Mobasher, B., Burke, R., Sandvig, J. and Bhaumik, ...
Bhaumik, R., Mobasher, B. and Burke, R., "A clustering approach ...
Hurley, N., Cheng, Z. and Zhang, M., "Statistical attack detection", ...
Wilson, D.C. and Seminario, C.E., "When power users attack: Assessing ...
Seminario, C.E. and Wilson, D.C., "Nuking item-based collaborative recommenders with ...
Zhang, F., "Analysis of bandwagon and average hybrid attack model ...
O'Mahony, M., Hurley, N., Kushmerick, N. and Silvestre, G., "Collaborative ...
Mobasher, B., Burke, R. and Sandvig, J.J., "Model-based collaborative filtering ...
Dellarocas, C., "Immunizing online reputation reporting systems against unfair ratings ...
O’Mahony, M.P., Hurley, N.J. and Silvestre, G., "Promoting recommendations: An ...
Burke, R., Mobasher, B., Williams, C. and Bhaumik, R., "Classification ...
Williams, C.A., Mobasher, B. and Burke, R., "Defending recommender systems: ...
Tang, T. and Tang, Y., "An effective recommender attack detection ...
Xia, H., Fang, B., Gao, M., Ma, H., Tang, Y. ...
Yang, Z., Xu, L., Cai, Z. and Xu, Z., "Re-scale ...
Wu, Z.-A., Zhuang, Y., Wang, Y.-Q. and Cao, J., "Shilling ...
Li, W., Gao, M., Li, H., Zeng, J., Xiong, Q. ...
Wu, Z., Wu, J., Cao, J. and Tao, D., "Hysad: ...
Mehta, B., "Unsupervised shilling detection for collaborative filtering", in AAAI., ...
Shao, C. and zhong yi Sun, Y., "Shilling attack detection ...
Ajzen, I., "The theory of planned behavior", Organizational Behavior and ...
Zhou, W., Koh, Y.S., Wen, J., Alam, S. and Dobbie, ...
Zhou, W., Wen, J., Koh, Y.S., Alam, S. and Dobbie, ...
Zhou, W., Wen, J., Koh, Y.S., Xiong, Q., Gao, M., ...
Zhang, S., Chakrabarti, A., Ford, J. and Makedon, F., "Attack ...
Oestreicher-Singer, G. and Sundararajan, A., "Recommendation networks and the long ...
Kong, X., Shi, Y., Yu, S., Liu, J. and Xia, ...
Liao, H., Ding, S., Wang, M. and Ma, G., "An ...
Salehi, S. and Pouyan, A., "Detecting overlapping communities in social ...
Harper, F.M. and Konstan, J.A., "The movielens datasets: History and ...
Cao, J., Wu, Z., Mao, B. and Zhang, Y., "Shilling ...
نمایش کامل مراجع