سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

Estimating cash in bank branches by time series and neural network approaches

Publish Year: 1400
Type: Journal paper
Language: English
View: 286

This Paper With 9 Page And PDF Format Ready To Download

این Paper در بخشهای موضوعی زیر دسته بندی شده است:

Export:

Link to this Paper:

Document National Code:

JR_BDCV-1-4_001

Index date: 18 January 2023

Estimating cash in bank branches by time series and neural network approaches abstract

Providing efficient and powerful approach for liquidity management of bank branches has always been one of the most important and challenging issues for researchers and scholars in the banking field. In other words, estimating the amount of required cash in different branches of the bank is one of the basic and important questions for managers of the banking system. Because on the one hand, if the amount of cash is less than the required amount, the bank runs the default risk, and on the other hand, if the amount of cash is more than the required amount, the bank incurs opportunity costs. Therefore, the purpose of this study is to provide a practical approach to predict the optimal amount of required cash in bank branches. For this purpose, the concepts of time series, neural network approach and vector autoregressive model are used. The effectiveness of the proposed approach is also examined using real data.

Estimating cash in bank branches by time series and neural network approaches Keywords:

Estimating cash in bank branches by time series and neural network approaches authors

Pejman Peykani

Department of Industrial Engineering, Iran University of Science and Technology, Tehran, Iran.

Farzad Eshghi

Department of Mathematics, Science and Research Branch, Islamic Azad University, Tehran, Iran.

Alireza Jandaghian

Department of Industrial Engineering, K. N. Toosi University of Technology, Tehran, Iran.

Hamed Farrokhi-Asl

Sheldon B. Lubar School of Business, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA.

Farid Tondnevis

Department of Management, University of Tehran, Tehran, Iran.

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
Santos, J. A. (۲۰۰۱). Bank capital regulation in contemporary banking ...
Demyanyk, Y., & Hasan, I. (۲۰۱۰). Financial crises and bank ...
Balthazar, L. (۲۰۰۶). From Basel ۱ to Basel ۳: The ...
Herring, R. J. (۲۰۰۲). The basel ۲ approach to bank ...
King, P., & Tarbert, H. (۲۰۱۱). Basel III: an overview. ...
Zaragoza, M. A., & Mota, I. F. D. L. (۲۰۱۶). ...
Baghbani, G., & Eskandari, F. (۲۰۱۸). Calculating the required cash ...
Bilir, C., & Döşeyen, A. (۲۰۱۸). Optimization of ATM and ...
Lázaro, J. L., Jiménez, Á. B., & Takeda, A. (۲۰۱۸). ...
Tavana, M., Abtahi, A. R., Di Caprio, D., & Poortarigh, ...
Desai, A. P., Bobade, S. R., Baravkar, K. K., Nerkar, ...
Ranjbarfard, M., & Ahmadi, S. (۲۰۲۰). A study of data ...
Cabello, J. G. (۲۰۱۳). Cash efficiency for bank branches. Springer ...
Tam, K. Y. (۱۹۹۱). Neural network models and the prediction ...
Charnes, A., Cooper, W., Lewin, A. Y., & Seiford, L. ...
Emrouznejad, A., & Yang, G. L. (۲۰۱۸). A survey and ...
An, Q., Tao, X., & Xiong, B. (۲۰۲۱). Benchmarking with ...
Peykani, P., Mohammadi, E., Saen, R. F., Sadjadi, S. J., ...
Banker, R. D. (۲۰۲۱). Stochastic data envelopment analysis. Data envelopment ...
Peykani, P., Mohammadi, E., & Emrouznejad, A. (۲۰۲۱). An adjustable ...
Peykani, P., Hosseinzadeh Lotfi, F., Sadjadi, S. J., Ebrahimnejad, A., ...
نمایش کامل مراجع