Toward prediction of entrepreneurial exit in Iran; a study based on GEM ۲۰۰۸-۲۰۱۹ data and approach of machine learning algorithms
Publish place: Big Data and Computing Visions، Vol: 1، Issue: 3
Publish Year: 1400
نوع سند: مقاله ژورنالی
زبان: English
View: 286
This Paper With 17 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
این Paper در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_BDCV-1-3_001
تاریخ نمایه سازی: 28 دی 1401
Abstract:
This study discusses the prediction model of Entrepreneurial Exit from Entrepreneurial Perceptions, acquired the data from the Global Entrepreneurship Monitor's (GEM) database in ۲۰۰۸-۲۰۱۹. Some essential indicators include Opportunity Perception, Fear of Failure, Capability Perception, Role Model, and Entrepreneurial Intention. Data mining results show that the exit reasons and entrepreneurial intention have a more significant impact on entrepreneurial exit than other variables. This research applies the Random Forest Algorithm to get a prediction model that shows the entrepreneurial exit. According to the Random Forest Algorithm results, accuracy, ROC-AUC score, AUC curve, precision, recall, and F۱ score validate the classification method. The prediction model shows that the best accuracy predictor of entrepreneurial exit is ۹۹ percent, and another criteria ROC_AUC score ۹۶%. Consistent results demonstrate that the proposed method can consider a promisingly successful predictive model of entrepreneurial exit with excellent predictive performance. These results can predict the individuals' entrepreneurial exit possibility before the psychological and financial impact and loss of capital and failure.
Keywords:
Entrepreneurial exit , Entrepreneurial perceptions , Machine Learning , Global Entrepreneurship Monitor (GEM)
Authors
Masoumeh Moterased
Faculty of Entrepreneurship, University of Tehran, Tehran, Iran.
Seyed Mojtaba Sajadi
School of Strategy and Leadership, Faculty of Business and law, Coventry University, UK.
Ali Davari
Faculty of Entrepreneurship, University of Tehran, Tehran, Iran.
Mohammad Reza Zali
Faculty of Entrepreneurship, University of Tehran, Tehran, Iran.
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :