Apple defect detection using statistical histogrambased Fuzzy C-means algorithm
Publish Year: 1390
Type: Conference paper
Language: English
View: 1,588
This Paper With 5 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
Export:
Document National Code:
ICMVIP07_083
Index date: 18 August 2012
Apple defect detection using statistical histogrambased Fuzzy C-means algorithm abstract
Image segmentation is one of the important andcomplicated processes among image processing and computervision algorithm. Its purpose is to partition an input image intodisjoint parts. In this article an important application of imageprocessing in determination of apple quality is studied, and anautomatic algorithm is proposed in order to determine applesskin color defects. First, this image is converted from RGB tocolor space L*a*b*. Then fruit shape is extracted by ACMalgorithm. Finally, the image has segmented using SHFCMalgorithm. Experimental results on the acquired images showthat both FCM and SHFCM spend the same iterations toaccomplish the segmentation process and get the same results.However, the proposed SHFCM algorithm consumes less timethan the standard FCM algorithm. Accuracy of the proposedalgorithm on the acquired images is 91% and 96% for healthypixels and defected ones, respectively.
Apple defect detection using statistical histogrambased Fuzzy C-means algorithm Keywords:
Apple defect detection using statistical histogrambased Fuzzy C-means algorithm authors
Ghobad Moradi
Islamic Azad University, Ravansar Branch, Kermanshah, Iran
Mousa Shamsi
Faculty of Electrical Engineering Sahand University of Technology Tabriz, Iran
Mohammad Hossein Sedaaghi
Faculty of Electrical Engineering Sahand University of Technology Tabriz, Iran
Setareh Moradi
Member of Young Researcher Club, Branch of Kermanshah Azad University, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :