سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

Regularized Prabhakar derivative for partial differential equations

Publish Year: 1401
Type: Journal paper
Language: English
View: 197

This Paper With 12 Page And PDF Format Ready To Download

Export:

Link to this Paper:

Document National Code:

JR_CMDE-10-3_012

Index date: 29 January 2023

Regularized Prabhakar derivative for partial differential equations abstract

Prabhakar fractional operator was applied recently for studying the dynamics of complex systems from several branches of sciences and engineering. In this manuscript, we discuss the regularized Prabhakar derivative applied to fractional partial differential equations using the Sumudu homotopy analysis method(PSHAM). Three illustrative examples are investigated to confirm our main results.

Regularized Prabhakar derivative for partial differential equations Keywords:

Regularized Prabhakar derivative for partial differential equations authors

Ahmed Bokhari

Department of Mathematics, Faculty of Exact Sciences and Informatics, Hassiba Benbouali University of Chlef, Algeria.

Dumitru Baleanu

Department of Mathematics, Faculty of Arts and Sciences, Cankaya University, TR-۰۶۵۳۰ Ankara, Turkey.

Rachid Belgacem

Department of Mathematics, Faculty of Exact Sciences and Informatics, Hassiba Benbouali University of Chlef, Algeria.

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
O. P. Agrawal, Fractional optimal control of a distributed system ...
F. A. Aliev, N .A. Aliev, M. M. Mutallimov, and ...
B. Alkahtani, V. Gulati, A. Klman, Application of Sumudu transform ...
D. Baleanu, K. Diethelm, E. Scalas, and J. J. Trujillo, ...
F. B. M. Belgacem and A. A. Karaballi, Sumudu transform ...
R. Belgacem, A. Bokhari, and B. Sadaoui, Shehu Transform of ...
M. Caputo, Linear model of dissipation whose Q is almost ...
M. Caputo and M. A. Fabrizio, New definition of fractional ...
V. F. M. Delgado, J. F. G´omez-Aguilar, H. Y´epez-Mart ´ınez, ...
M. H. Derakhshan, M. A. Darani, A. Ansari, and R. ...
M. A. El-Tawil and S. N. Huseen, On Convergence of ...
A. Erdelyi, W. Magnus, F. Oberhettinger, and F.G. Tricomi, Higher ...
R. Garra and R. Garrappa, The Prabhakar or three parameter ...
R. Garra, R. Goreno, F. Polito, and Z. Tomovski, Hilfer-Prabhakar ...
V. Gu¨lkac, The homotopy perturbation method for the BlackScholes equation, ...
O. Guner and A. Bekir, Solving nonlinear space-time fractional differential ...
A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, ...
S. Kumar, D. Kumar, and J. Singh, Numerical computation of ...
F. Mainardi, Fractional Calculus and Waves in Linear Visco-elasticity: An ...
K. S. Miller and B. Ross, An Introduction to the ...
K.B. Oldham and J. Spanier, The Fractional Calculus, New York, ...
S. K. Panchal, Pravinkumar V. Dole, and Amol D. Khandagale, ...
R. K. Pandey and H. K. Mishra, Homotopy analysis Sumudu ...
T. R. Prabhakar, A singular integral equation with a generalized ...
I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, ۱۹۹۹ ...
N. H. Sweilam, A. M. Nagy, and A. A. EL-Sayed, ...
G. K. Watugala, Sumudu Transform- an Integral transform to solve ...
A. Wiman, U¨ber den fundamental satz in der teorie der ...
نمایش کامل مراجع