Heat Transfer of Wavy Microchannel Heat Sink with Microtube and Ag/Water-Ethylene Glycol Hybrid Nanofluid
Publish place: International Journal of Advanced Design and Manufacturing Technology، Vol: 15، Issue: 4
Publish Year: 1401
Type: Journal paper
Language: English
View: 211
This Paper With 10 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
Export:
Document National Code:
JR_ADMTL-15-4_003
Index date: 1 March 2023
Heat Transfer of Wavy Microchannel Heat Sink with Microtube and Ag/Water-Ethylene Glycol Hybrid Nanofluid abstract
In the present study, novel channel geometries in a wavy channel heat sink (HS) are investigated using ANSYS-FLUENT software. The Ag/water-ethylene glycol (50%) nanofluid is selected for cooling the CPU in this HS. The second-order upwind method is employed to discretize the momentum Equation and the SIMPLEC algorithm is employed for coupling velocity and pressure fields. Comparison of the two HSs with and without microtube shows that the presence of the microtube increases the uniformity of the CPU surface temperature distribution and decreases the mean surface temperature of the CPU (TCPU-Mean). However, the pumping power consumption of the system increases about 10 times. The results also demonstrate that the addition of nanoparticles results in intensification in the Performance Evaluation Criterion (PEC) of the system and up to 30%, especially at high Reynolds numbers.
Heat Transfer of Wavy Microchannel Heat Sink with Microtube and Ag/Water-Ethylene Glycol Hybrid Nanofluid Keywords:
Heat Transfer of Wavy Microchannel Heat Sink with Microtube and Ag/Water-Ethylene Glycol Hybrid Nanofluid authors
Akram Jahanbakhshi
Department of Mechanical Engineering, University of Shahrekord, Iran
Afshin Ahmadi Nadooshan
Department of Mechanical Engineering, Shahrekord University, Shahrekord, Iran
morteza Bayreh
Department of Mechanical Engineering, Shahrekord University, Shahrekord, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :