Evaluating the efficiency of the genetic algorithm in designing the ultimate pit limit of open-pit mines

Publish Year: 1402
نوع سند: مقاله ژورنالی
زبان: English
View: 137

متن کامل این Paper منتشر نشده است و فقط به صورت چکیده یا چکیده مبسوط در پایگاه موجود می باشد.
توضیح: معمولا کلیه مقالاتی که کمتر از ۵ صفحه باشند در پایگاه سیویلیکا اصل Paper (فول تکست) محسوب نمی شوند و فقط کاربران عضو بدون کسر اعتبار می توانند فایل آنها را دریافت نمایند.

  • Certificate
  • من نویسنده این مقاله هستم

این Paper در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_IJMGE-57-1_007

تاریخ نمایه سازی: 16 فروردین 1402

Abstract:

The large-scale open-pit mine production planning problem is an NP-hard issue. That is, it cannot be solved in a reasonable computational time. To solve this problem, various methods, including metaheuristic methods, have been proposed to reduce the computation time. One of these methods is the genetic algorithm (GA) which can provide near-optimal solutions to the problem in a shorter time. This paper aims to evaluate the efficiency of the GA technique based on the pit values and computational times compared with other methods of designing the ultimate pit limit (UPL). In other words, in addition to GA evaluation in UPL design, other proposed methods for UPL design are also compared. Determining the UPL of an open-pit mine is the first step in production planning. UPL solver selects blocks whose total economic value is maximum while meeting the slope constraints. In this regard, various methods have been proposed, which can be classified into three general categories: Operational Research (OR), heuristic, and metaheuristic. The GA, categorized as a metaheuristic method, Linear Programming (LP) model as an OR method, and Floating Cone (FC) algorithm as a heuristic method, have been employed to determine the UPL of open-pit mines. Since the LP method provides the exact answer, consider the basics. Then the results of GA were validated based on the results of LP and compared with the results of FC. This paper used the Marvin mine block model with characteristics of ۵۳۲۷۱ blocks and eight levels as a case study. Comparing the UPL value's three ways revealed that the LP model received the highest value by comparing the value obtained from GA and the FC algorithm's lowest value. However, the GA provided the results in a shorter time than LP, which is more critical in large-scale production planning problems. By performing the sensitivity analysis in the GA on the two parameters, crossover and mutation probability, the GA's UPL value was modified to ۲۰۹۴۰. Its UPL value is only ۸% less than LP's UPL value.

Authors

Nooshin Azadi

Faculty of Mining Engineering, Sahand University of Technology, Tabriz, Iran

Hossein Mirzaei-Nasirabad

Faculty of Mining Engineering, Sahand University of Technology, Tabriz, Iran

Amin Mousavi

Faculty of Mining Engineering, Tarbiat Modares University, Tehran, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Mwangi, A., et al., Ultimate Pit Limit Optimization Methods in ...
  • Osanloo, M., J. Gholamnejad, and B. Karimi, Long-term open pit ...
  • Newman, A.M., et al., A review of operations research in ...
  • Akbari, A., M. OSANLOU, and M. Shirazi, Determination of ultimate ...
  • Johnson, T.B., Optimum open pit mine production scheduling. ۱۹۶۸, CALIFORNIA ...
  • Robert Underwood and B. Tolwinski, A mathematical programming viewpoint for ...
  • Sattarvand, J. and C. Niemann-Delius, Past, Present and Future of ...
  • Franco-Sepúlveda, G., J.C. Del Rio-Cuervo, and M.A. Pachón-Hernández, State of ...
  • Katoch, S., S.S. Chauhan, and V. Kumar, A review on ...
  • Frimpong, S. and P.K. Achireko, The MCS/MFNN algorithm for open ...
  • Shishvan, M.S. and J. Sattarvand, Long-term production planning of open ...
  • Kumral, M. and P.A. Dowd, A simulated annealing approach to ...
  • Khan, A. and C. Niemann-Delius, Production scheduling of open pit ...
  • Alipour, A., et al., An integrated approach to open-pit mines ...
  • Espinoza, D., et al., MineLib: a library of open pit ...
  • Hochbaum, D.S. and A. Chen, Performance analysis and best implementations ...
  • Mousavi Nogholi, A.A., Optimisation of open pit mine block sequencing, ...
  • Kumar, M., et al., Genetic algorithm: Review and application. Available ...
  • Hassanat, A., et al., Choosing mutation and crossover ratios for ...
  • Pencheva, T., K. Atanassov, and A. Shannon, Modelling of a ...
  • Maulik, U. and S. Bandyopadhyay, Genetic algorithm-based clustering technique. Pattern ...
  • Villalba Matamoros, M.E. and M. Kumral, Calibration of Genetic Algorithm ...
  • Ataei, M. and M. Osanloo Using a combination of genetic ...
  • Saltelli, A. and P. Annoni, How to avoid a perfunctory ...
  • نمایش کامل مراجع