A Reinforcement Learning-based Encoder-Decoder Framework for Learning Stock Trading Rules
Publish Year: 1402
Type: Journal paper
Language: English
View: 213
This Paper With 17 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
Export:
Document National Code:
JR_JADM-11-1_009
Index date: 9 April 2023
A Reinforcement Learning-based Encoder-Decoder Framework for Learning Stock Trading Rules abstract
The quality of the extracted features from a long-term sequence of raw prices of the instruments greatly affects the performance of the trading rules learned by machine learning models. Employing a neural encoder-decoder structure to extract informative features from complex input time-series has proved very effective in other popular tasks like neural machine translation and video captioning. In this paper, a novel end-to-end model based on the neural encoder-decoder framework combined with deep reinforcement learning is proposed to learn single instrument trading strategies from a long sequence of raw prices of the instrument. In addition, the effects of different structures for the encoder and various forms of the input sequences on the performance of the learned strategies are investigated. Experimental results showed that the proposed model outperforms other state-of-the-art models in highly dynamic environments.
A Reinforcement Learning-based Encoder-Decoder Framework for Learning Stock Trading Rules Keywords:
A Reinforcement Learning-based Encoder-Decoder Framework for Learning Stock Trading Rules authors
M. Taghian
Computer Engineering Department, Amirkabir University of Technology, Tehran, Iran
A. Asadi
Computer Engineering Department, Amirkabir University of Technology, Tehran, Iran
R. Safabakhsh
Computer Engineering Department, Amirkabir University of Technology, Tehran, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :