Learning a Nonlinear Combination of Generalized Heterogeneous Classifiers
Publish Year: 1402
Type: Journal paper
Language: English
View: 207
This Paper With 18 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
Export:
Document National Code:
JR_JADM-11-1_007
Index date: 9 April 2023
Learning a Nonlinear Combination of Generalized Heterogeneous Classifiers abstract
Finding an effective way to combine the base learners is an essential part of constructing a heterogeneous ensemble of classifiers. In this paper, we propose a framework for heterogeneous ensembles, which investigates using an artificial neural network to learn a nonlinear combination of the base classifiers. In the proposed framework, a set of heterogeneous classifiers are stacked to produce the first-level outputs. Then these outputs are augmented using several combination functions to construct the inputs of the second-level classifier. We conduct a set of extensive experiments on 121 datasets and compare the proposed method with other established and state-of-the-art heterogeneous methods. The results demonstrate that the proposed scheme outperforms many heterogeneous ensembles, and is superior compared to singly tuned classifiers. The proposed method is also compared to several homogeneous ensembles and performs notably better. Our findings suggest that the improvements are even more significant on larger datasets.
Learning a Nonlinear Combination of Generalized Heterogeneous Classifiers Keywords:
Learning a Nonlinear Combination of Generalized Heterogeneous Classifiers authors
M. Rahimi
Faculty of Computer Engineering, Shahrood University of Technology, Shahrood, Iran.
A. A. Taheri
Faculty of Computer Engineering, Shahrood University of Technology, Shahrood, Iran.
H. Mashayekhi
Faculty of Computer Engineering, Shahrood University of Technology, Shahrood, Iran.
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :