استفاده از شبکه عصبی مصنوعی در آنالیز حساسیت تاثیر پارامترها بر بار معلق رسوب ( مطالعه موردی لیقوان چای
Publish place: 3rd National Congress on Civil Engineering
Publish Year: 1386
نوع سند: مقاله کنفرانسی
زبان: Persian
View: 2,726
This Paper With 9 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
این Paper در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
NCCE03_030
تاریخ نمایه سازی: 27 شهریور 1385
Abstract:
در این تحقیق مدل شبکه عصبی مصنوعی (ANN) بعنوان یک مدل جعبه سیاه جهت بررسی تاثیر درجه حرارت و دبی جریان بر میزان بار رسوب معلق حوضه آبریز لیقوان چای معرفی می گردد. مدل شبکه عصبی مصنوعی با الگوریتم آموزشی لونبرگ- مارگارت قانون یادگیری پس انتشار خطا (BP) برای تعیین ساختار بهینه مدل استفاده گردید. پس از تعیین ساختار بهینه مدل، تمام الگوریتمهای آموزشی قانون پس انتشار خطا نیز مورد بررسی قرار گرفتند تا مقایسه ای بین نتایج مدل ANN با نتایج مدلهای آماری همچون مدل رگرسیون، مدل سری زمانی خود همبسته (AR)،مدل منحنی توانی و مدل رگرسیون خطی چند متغیره (MLR) صورت گرفت. از روی نتایج حاصله می توان عملکرد بهتر مدل ANN بر مدلهای آماری کلاسیک را بیان کرد، آما مورد مدل خود همیشه مرتبه بالاتر، مدل ANN بر مدلهای آماری کلاسیک را بیان کرد، اما در مورد مدل خود همبسته مرتبه بالاتر، مدل ANN توانایی کمتری در انعکاس رفتار استوکاستیکی متغیرهای هیدرولوژیکی داشته و اغلب در پیش بینی های قطعی بکار گرفته می شود. در این تحقیق حساسیت کمتر رسوب معلق به درجه حرارت محیط استنباط شده است.
Keywords:
Authors
وحید نورانی
استادیار دانشکده مهندسی عمران دانشگاه تبریز
محمدتقی اعلمی
استادیار دانشکده مهندسی عمران دانشگاه تبریز
محمدحسین امین فر
استادیار دانشکده مهندسی عمران دانشگاه تبریز
احد نورپور
کارشناس ارشد مهندسی آب دانشگاه تبریز
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :