سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

ارزیابی و دسته بندی روش ها ی ایجاد سیستم های پیشنهاد دهنده شخصی سازی شده

Publish Year: 1391
Type: Conference paper
Language: Persian
View: 3,032

This Paper With 8 Page And PDF Format Ready To Download

Export:

Link to this Paper:

Document National Code:

ICEEE04_361

Index date: 27 September 2012

ارزیابی و دسته بندی روش ها ی ایجاد سیستم های پیشنهاد دهنده شخصی سازی شده abstract

امروزه علاقه مندی بسیاری به حوزه ی سیستم های پیشنهاد دهنده در سازمان ها و محافل علمی وجود دارد. این سیستم ها در حوزه های کاربردی مختلف جهت حمایت از کاربران در تصمیم گیری، کمک به آن ها در مدریت حجم انبوه اطلاعات و فراهم کردن شکل هوشمندی از دسترسی به اطلاعات قابل استفاده هستند. اما به دلیل نوظهور بودن این مسئله، کمبود دسته بندی مشخص در رابطه با روش های پیاده سازی سیستم های پیشنهاد دهنده در منابع پژوهشی احساس می شود. در همین راستا در این مقاله قصد داریم به تعریف و بررسی ایده ها و مفاهیم پایه ای سیستم های پیشنهاد دهنده، ارائه ی دسته بندی جامعی از روش های تولید پیشنهاد، بررسی هر یک از این روش ها و همچنین نقاط قوت و ضعت روش ها بپردازیم.

ارزیابی و دسته بندی روش ها ی ایجاد سیستم های پیشنهاد دهنده شخصی سازی شده Keywords:

سیستم های پیشنهاد دهنده , پالایش مشارکتی , پالایش محتوایی , پالایش مبتنی بر داده های شخصی , پالایش مبتنی بر دانش

ارزیابی و دسته بندی روش ها ی ایجاد سیستم های پیشنهاد دهنده شخصی سازی شده authors

راضیه قیاسی

دانشجوی فناوری اطلاعات دانشگاه قم

سیدحسن هانی زواره ای

بخش فناوری اطلاعات دانشگاه قم

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
Adomavicius E., Tuzhilin A., "Toward the next generation of recommend ...
Albadvi A., M. Shahbazi. "A hybrid _ _ ommendation technique ...
Bobadilla J., Ortega F., Hernando A., Bernal J. _ collaborativ ...
Burke R., "Hybrid R ecommender Systems: Survey and Experiments". User ...
Deshpande, M., Karypis, G. "Item-based top-N _ _ ommendation algorithms". ...
Desrosier C., Karypis G., _ comprehensive srvey of neighb orhood-based ...
Drachsler H., Hummel H. G.K. and Koper R., "Personal recommender ...
Felfernig A., Burke R., _ _ onstraint- based Recommender Systems: ...
Felfernig A., Friedrich G., Jannach D. and Zanker M. _ ...
http :/fa.wikipedia. org ...
Jannach D., Zanker M., Felfernig A., Friedrich G., _ _ ...
Jiang Y., Shang J., Liu Y., "Maximizing customer satisfaction through ...
Lee Y.L., Huang F.H., _ comnender system architecture for adaptive ...
Liang T.P., Yang Y.F., Chen D.N., Ku. Y.C. "A semantice ...
Linden, G., Smith, B., York, J. ...
recommeI dations : Item-to-item collaborative filtering". IEEE Internet Computing, 7, ...
Mart Inez L, Barranco M.J. PErez L.G., Espinilla M., _ ...
Ricci F., Rokach L. and Shapira B., (2011), "Introduction to ...
Riedl J., Jameson A., Konstan J., _ Techniques for Personalized ...
Sarwar, B., Karypis, G., Konstan, J., Reidl, J. "Item-based collaborative ...
Tow1 B., Quinn C., :Knowledge Based Recommender Systems Using Explicit ...
Wei C.P., M.J, Shaw, R.F. Easley, _ survey of recommen ...
Yu, Yu, Philip S. "Data mining and p ersonalization technologies". ...
نمایش کامل مراجع

مقاله فارسی "ارزیابی و دسته بندی روش ها ی ایجاد سیستم های پیشنهاد دهنده شخصی سازی شده" توسط راضیه قیاسی، دانشجوی فناوری اطلاعات دانشگاه قم؛ سیدحسن هانی زواره ای، بخش فناوری اطلاعات دانشگاه قم نوشته شده و در سال 1391 پس از تایید کمیته علمی چهارمین کنفرانس مهندسی برق و الکترونیک ایران پذیرفته شده است. کلمات کلیدی استفاده شده در این مقاله سیستم های پیشنهاد دهنده، پالایش مشارکتی، پالایش محتوایی، پالایش مبتنی بر داده های شخصی، پالایش مبتنی بر دانش هستند. این مقاله در تاریخ 6 مهر 1391 توسط سیویلیکا نمایه سازی و منتشر شده است و تاکنون 3032 بار صفحه این مقاله مشاهده شده است. در چکیده این مقاله اشاره شده است که امروزه علاقه مندی بسیاری به حوزه ی سیستم های پیشنهاد دهنده در سازمان ها و محافل علمی وجود دارد. این سیستم ها در حوزه های کاربردی مختلف جهت حمایت از کاربران در تصمیم گیری، کمک به آن ها در مدریت حجم انبوه اطلاعات و فراهم کردن شکل هوشمندی از دسترسی به اطلاعات قابل استفاده هستند. اما به دلیل نوظهور بودن ... . برای دانلود فایل کامل مقاله ارزیابی و دسته بندی روش ها ی ایجاد سیستم های پیشنهاد دهنده شخصی سازی شده با 8 صفحه به فرمت PDF، میتوانید از طریق بخش "دانلود فایل کامل" اقدام نمایید.