سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

Fast Reverse converter Design for three moduli set {2^n,2^n-1,2^(n-1)-1} Using CRTF

Publish Year: 1401
Type: Journal paper
Language: English
View: 199

This Paper With 8 Page And PDF Format Ready To Download

Export:

Link to this Paper:

Document National Code:

JR_IJCOE-7-2_004

Index date: 13 June 2023

Fast Reverse converter Design for three moduli set {2^n,2^n-1,2^(n-1)-1} Using CRTF abstract

Security is necessary for marine communication systems such as marine wireless sensor networks and automatic identification system which is the emerging system for automatic traffic control and collision avoidance services in the maritime transportation sector. Public key cryptography algorithms have an important role in these systems to realize secure communication systems. Public key cryptography algorithms such as RSA and Elliptic curve cryptography (ECC) have high computation costs and many works are done by researcher in order to speed up the operation. Residue number system which is a carry free system is widely used to speed up the operation in public key cryptography algorithm. In this paper, an improved RNS reverse converter for three-module set {2^n,2^n-1,2^(n-1)-1} using chinese reminder theorem with fractional is presented. Unit gate delay and area comparison of the proposed reverse converter with literature have confirmed that the proposed reverse conversion takes fewer hardware costs and higher speed.

Fast Reverse converter Design for three moduli set {2^n,2^n-1,2^(n-1)-1} Using CRTF Keywords:

Fast Reverse converter Design for three moduli set {2^n,2^n-1,2^(n-1)-1} Using CRTF authors

Javad Ahsan

Faculty of Marine Engineering, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran

Mohammad Esmaeildoust

Faculty of Marine Engineering, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran

Amer Kaabi

Department of Basic Sciences, Abadan Faculty of Petroleum Engineering, Petroleum University of Technology, Abadan, Iran

Vahid Zarei

Faculty of Marine Engineering, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
Y. J. Kim and K. Kyung. “Secured radio communication based ...
A. Goudossis and S. K. Katsikas. “Towards a secure automatic ...
L. Wei. L. Zhang. D. Huang. and K. Zhang. “Efficient ...
R. L. Rivest. A. Shamir. and L. M. Adleman. “A ...
B. N. Koblitz. “Elliptic Curve Cryptosystems.” vol. ۴. no. ۱۷۷. ...
V. S. Miller. “Use of Elliptic Curves in Cryptography.” Lect. ...
S. Goldwasser. S. Micali. and R. L. Rivest. “Digital signature ...
M. Esmaeildoust. D. Schinianakis. H. Javashi. T. Stouraitis. and K. ...
D. M. Schinianakis. A. P. Fournaris. H. E. Michail. A. ...
L. Imbert. J. Bajard. L. Imbert. J. B. A. Full. ...
K. Navi. A. S. Molahosseini. and M. Esmaeildoust. “How to ...
S. Asif. M. S. Hossain. Y. Kong. and W. Abdul. ...
S. Asif and Y. Kong. “Highly Parallel Modular Multiplier for ...
W. Wang. M. N. S. Swamy. and M. O. Ahmad. ...
Y. Wang. X. Song. M. Aboulhamid. and H. Shen. “Adder ...
A. Hiasat. “An Efficient Reverse Converter for the Three-Moduli Set ...
A. Hiasat and L. Sousa. “On the Design of RNS ...
P. Lyakhov. M. Bergerman. N. Semyonova. D. Kaplun. and A. ...
P. M. Kogge and H. S. Stone. “A parallel algorithm ...
A. Omondi and B. Premkumar. Residue Number Residue Number. ۱۹۵۱ ...
C. Y. Hung and B. Parhami. “An approximate sign detection ...
N. I. Chervyakov. A. S. Molahosseini. P. A. Lyakhov. M. ...
H. Nakahara and T. Sasao. “A High-speed Low-power Deep Neural ...
S. G. R and R. Kalaimathi. “Design and Analysis of ...
M. Obeidi Daghlavi. M. R. Noorimehr. and M. Esmaeildoust. “Efficient ...
نمایش کامل مراجع